Free Access
Volume 35, Number 2, March/April 2001
Page(s) 229 - 238
Published online 15 April 2002
  1. H. Bellout, J. Necas and K.R. Rajagopal, On the existence and uniqueness of flows of multipolar fluids of grade 3 and their stability. Internat. J. Engrg. Sci. 37 (1999) 75-96. [CrossRef] [MathSciNet] [Google Scholar]
  2. J.-M. Delort, Estimations fines pour des opérateurs pseudo-différentiels analytiques sur un ouvert à bord de Formula application aux equations d'Euler. Comm. Partial Differential Equations 10 (1985) 1465-1525. [CrossRef] [MathSciNet] [Google Scholar]
  3. R. Grauer and T. Sideris, Numerical computation of three dimensional incompressible ideal fluids with swirl. Phys. Rev. Lett. 67 (1991) 3511. [CrossRef] [PubMed] [Google Scholar]
  4. R. Grauer and T. Sideris, Finite time singularities in ideal fluids with swirl. Phys. D 88 (1995) 116-132. [CrossRef] [MathSciNet] [Google Scholar]
  5. E. Hille and R.S. Phillips, Functional analysis and semi-Groups. Amer. Math. Soc., Providence, R.I. (1957). [Google Scholar]
  6. R. Kerr, Evidence for a singularity of the three-dimensional incompressible Euler equations. Phys. Fluids A5 (1993) 1725-1746. [Google Scholar]
  7. J. Leray, Sur le mouvement d'un liquide visqueux remplissant l'espace. Acta Math. 63 (1934) 193-248. [Google Scholar]
  8. P.-L. Lions, Mathematical topics in fluid mechanics, Vol. 1. Incompressible models. Oxford University Press, New York (1996). [Google Scholar]
  9. J. Málek, J. Necas, M. Pokorný and M. Schonbek, On possible singular solutions to the Navier-Stokes equations. Math. Nachr. 199 (1999) 97-114. [CrossRef] [MathSciNet] [Google Scholar]
  10. J. Necas, Theory of multipolar fluids. Problems and methods in mathematical physics (Chemnitz, 1993) 111-119. Teubner, Stuttgart, Teubner-Texte Math. 134 (1994). [Google Scholar]
  11. J. Necas, M. Růzicka and V. Sverák, Sur une remarque de J. Leray concernant la construction de solutions singulières des équations de Navier-Stokes. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 245-249. [Google Scholar]
  12. J. Necas, M. Růzicka and V. Sverák, On Leray's self-similar solutions of the Navier-Stokes equations. Acta Math. 176 (1996) 283-294. [CrossRef] [MathSciNet] [Google Scholar]
  13. A. Pumir and E. Siggia, Collapsing solutions to the 3-D Euler equations. Phys. Fluids A2 (1990) 220-241. [Google Scholar]
  14. A. Pumir and E. Siggia, Development of singular solutions to the axisymmetric Euler equations. Phys. Fluids A4 (1992) 1472-1491. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you