Free Access
Volume 35, Number 2, March/April 2001
Page(s) 271 - 293
Published online 15 April 2002
  1. D.N. Arnold and R.S. Falk, A uniformly accurate finite element method for the Reissner Mindlin plate. SIAM J. Numer. Anal 26 (1989) 1276-1250. [Google Scholar]
  2. I. Babuska, The finite element method with Lagrangian multipliers. Numer. Math 20 (1973) 179-192. [Google Scholar]
  3. I. Babuska and M. Suri, On the locking and robustness in the finite element method. SIAM J. Numer. Anal. 29 (1992) 1276-1290. [Google Scholar]
  4. C. Baiocchi, F. Brezzi and L. Franca, Virtual bubbles and the Galerkin-Least-squares method. Comput. Methods Appl. Mech. Engrg. 105 (1993) 125-141. [CrossRef] [MathSciNet] [Google Scholar]
  5. M. Bernadou and Y. Ducatel, Approximation of a general arch problems by straight beam elements. Numer. Math. 40 (1982) 1-29. [CrossRef] [MathSciNet] [Google Scholar]
  6. F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. RAIRO-Anal. Numér. (1974) 129-151. [Google Scholar]
  7. F. Brezzi and I. Douglas, Stabilized mixed methods for the stokes problem. Numér. Math. 53 (1988) 225-236. [Google Scholar]
  8. F. Brezzi and M. Fortin, Mixed and hybrid finite Element Methods. Springer-Verlag, Berlin, New-York, Springer Ser. Comput. Math. 15 (1991). [Google Scholar]
  9. F. Brezzi and A. Russo, Choosing bubbles for advection-diffusion problems. Math. Models Methods Appl. Sci. 4 (1994) 571-578. [Google Scholar]
  10. B. Budiansky and J.L. Sanders, On the best first order linear shell theory. Progr. Appl. Mech., Mac Millan, New-York, 129-140. [Google Scholar]
  11. D. Chenais, Rousselet and B. Benedict, Design sensibivity for arch structures with respect to midsurface shape under static loading. J. Optim. Theory Appl. 58 (1988) 225-239. [CrossRef] [MathSciNet] [Google Scholar]
  12. D. Chenais and J.-C. Paumier, On the locking phenomenon for a class of elliptic problems. Numer. Math. 67 (1994) 427-440 [Google Scholar]
  13. P.G. Ciarlet, The finite element method for elliptic problems. North Holland, Amsterdam (1978). [Google Scholar]
  14. Ph. Destuyender, Some numerical aspects of mixed finite elements for bending plates. Comput. Methods. Appl. Mech. Engrg. 78 (1990) 73-87. [CrossRef] [Google Scholar]
  15. L.P. Franca and T.J.R. Hughes, Two classes of mixed finite element methods. Comput. Methods Appl. Mech. Engrg. 69 (1986) 89-129. [Google Scholar]
  16. L.P. Franca and A. Russo, Unlocking with residual-free bubbles. Comput. Methods Appl. Mech. Engrg. 142 (1997) 361-364 [Google Scholar]
  17. A. Habbal and D. Chenais, Deterioration of a finite element method for arch structures when thickness goes to zero. Numer. Math. 62 (1992) 321-341. [CrossRef] [MathSciNet] [Google Scholar]
  18. V. Lods, A new formulation for arch structures. Application to optimization problems. RAIRO-Modél. Math. Anal. Numér. 28 (1994) 873-902. [MathSciNet] [Google Scholar]
  19. A.F.D. Loula, L.P. Franca, T.J.R. Hughes and I. Miranda, Stability Convergence and accuracy of a New finite element method for the circular arch problem. Comput. Methods Appl. Mech. Engrg. 63 (1987) 281-303. [CrossRef] [MathSciNet] [Google Scholar]
  20. Z. Ould Zeidane, Contributions théoriques en Optimisation et Modélisation des structures. Thèse Université de Nice Sophia-Antipolis, Nice (1995). [Google Scholar]
  21. A. Russo, Residual-free bubbles and Stabilized methods, in Proc. of the ninth International Conference on finite Elements in Fluids-New Trends and Applications, M.M. Cacchi, K. Morgan, J. Pariaux, B.A. Schreffer, O.C. Zienkiewicz, Eds., Venice (1995) 377-386. [Google Scholar]
  22. A. Russo, Bubble Stabilization of finite element methods for the linearized incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 132 (1996) 333-343. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you