Free Access
Issue
ESAIM: M2AN
Volume 35, Number 3, May-June 2001
Page(s) 525 - 548
DOI https://doi.org/10.1051/m2an:2001101
Published online 15 April 2002
  1. R. Adams, Sobolev spaces. Academic Press, New York (1975). [Google Scholar]
  2. J.H. Argyris, I. Fried and D.W. Scharpf, The TUBA family of plate elements for the matrix displacement method. Aero. J. Roy. Aero. Soc. 72 (1968) 701-709. [Google Scholar]
  3. N.W. Ashcroft and N.D. Mermin, Solid State Physics. Saunders College Publishing, Orlando (1976). [Google Scholar]
  4. J. Ball and R. James, Fine phase mixtures as minimizers of energy. Arch. Rat. Mech. Anal. 100 (1987) 13-52. [CrossRef] [MathSciNet] [Google Scholar]
  5. J. Ball and R. James, Proposed experimental tests of a theory of fine microstructure and the two-well problem. Phil. Trans. R. Soc. Lond. A 338 (1992) 389-450. [CrossRef] [Google Scholar]
  6. M. Bernadou and K. Hassan, Basis functions for general Hsieh-Clough-Tocher triangles, complete or reduced. Internat. J. Numer. Methods Engrg. 17 (1981) 784-789. [CrossRef] [MathSciNet] [Google Scholar]
  7. K. Bhattacharya and R.D. James, A theory of thin films of martensitic materials with applications to microactuators. J. Mech. Phys. Solids 47 (1999) 531-576. [CrossRef] [MathSciNet] [Google Scholar]
  8. K. Bhattacharya, B. Li and M. Luskin, The simply laminated microstructure in martensitic crystals that undergo a cubic to orthorhombic phase transformation. Arch. Rat. Mech. Anal. 149 (1999) 123-154. [CrossRef] [Google Scholar]
  9. S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Springer-Verlag, New York (1994). [Google Scholar]
  10. P. Belík, T. Brule and M. Luskin, Numerical modelling of a temperature-operated martensitic microvalve. http://www.math.umn.edu/ luskin/research/valve/. [Google Scholar]
  11. P. Belík and M. Luskin, Stability of microstructure for tetragonal to monoclinic martensitic transformations. ESAIM: M2AN 34 (2000) 663-685. [CrossRef] [EDP Sciences] [Google Scholar]
  12. C. Carstensen and P. Plechác, Numerical solution of the scalar double-well problem allowing microstructure. Math. Comp. 66 (1997) 997-1026. [CrossRef] [MathSciNet] [Google Scholar]
  13. C. Carstensen and P. Plechác, Adaptive algorithms for scalar non-convex variational problems. Appl. Numer. Math. 26 (1998) 203-216. [CrossRef] [MathSciNet] [Google Scholar]
  14. M. Chipot, C. Collins and D. Kinderlehrer, Numerical analysis of oscillations in multiple well problems. Numer. Math. 70 (1995) 259-282. [CrossRef] [MathSciNet] [Google Scholar]
  15. M. Chipot and D. Kinderlehrer, Equilibrium configurations of crystals. Arch. Rat. Mech. Anal. 103 (1988) 237-277. [Google Scholar]
  16. M. Chipot and S. Müller, Sharp energy estimates for finite element approximations of nonconvex problems. Preprint (1997). [Google Scholar]
  17. P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978). [Google Scholar]
  18. R.W. Clough and J.L. Tocher, Finite element stiffness matrices for analysis of plates in bending. In Proceedings of the conference on matrix methods in structural mechanics. Wright Patterson A.F.B., Ohio (1965) 515-545. [Google Scholar]
  19. C. Collins, Computation of twinning. In Microstructure and phase transitions. J. Ericksen, R. James, D. Kinderlehrer and M. Luskin Eds. IMA Vol. Math. Applic. 54, Springer-Verlag, New York (1993) 39-50. [Google Scholar]
  20. C. Collins and M. Luskin, The computation of the austenitic-martensitic phase transition. In Partial differential equations and continuum models of phase transitions. M. Rascle, D. Serre and M. Slemrod Eds. Lect. Notes Phys. 344, Springer-Verlag, Berlin (1989) 34-50. [Google Scholar]
  21. C. Collins, M. Luskin and J. Riordan, Computational results for a two-dimensional model of crystalline microstructure. In Microstructure and phase transitions. J. Ericksen, R. James, D. Kinderlehrer and M. Luskin Eds. IMA Vol. Math. Applic. 54, Springer-Verlag, New York (1993) 51-56. [Google Scholar]
  22. G. Dolzmann, Numerical computation of rank-one convex envelopes. SIAM J. Numer. Anal. 36 (1999) 1621-1635. [CrossRef] [MathSciNet] [Google Scholar]
  23. J.W. Dong, L.C. Chen, C.J. Palmstrøm, R.D. James and S. McKernann, Molecular beam epitaxy growth of ferromagnetic single crystal (001) Ni2MnGa on (001) GaAs. Appl. Phys. Lett. 75 (1999) 1443-45. [CrossRef] [Google Scholar]
  24. D.A. Dunavant, k High degree efficient symmetrical Gaussian quadrature rules for the triangle. Internat. J. Numer. Methods Engrg. 21 (1985) 1129-1148. [CrossRef] [MathSciNet] [Google Scholar]
  25. G.B. Folland, Real analysis. Modern techniques and their applications. John Wiley & Sons, Inc., New York (1984). [Google Scholar]
  26. M. Giaquinta. Calculus of variations. Springer-Verlag, Berlin (1996). [Google Scholar]
  27. D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order. Springer-Verlag, Berlin (1998). [Google Scholar]
  28. R. Glowinski, Numerical methods for nonlinear variational problems. Springer-Verlag, New York (1984). [Google Scholar]
  29. P.-A. Gremaud, Numerical analysis of a nonconvex variational problem related to solid-solid phase transitions. SIAM J. Numer. Anal. 31 (1994) 111-127. [CrossRef] [MathSciNet] [Google Scholar]
  30. M. Gurtin, Topics in finite elasticity. SIAM, Philadelphia (1981). [Google Scholar]
  31. R.D. James and R. Rizzoni, Pressurized shape memory thin films. J. Elasticity 59, special issue in honor of Roger Fosdick, D. Carlson Ed. (2000) 399-436. [Google Scholar]
  32. P. Krulevitch, A.P. Lee, P.B. Ramsey, J.C. Trevino, J. Hamilton and M.A. Northrup, Thin film shape memory alloy microactuators. Journal of Microelectromechanical Systems 5 (1996) 270. [CrossRef] [Google Scholar]
  33. M. Kruzík, Numerical approach to double well problems. SIAM J. Numer. Anal. 35 (1998) 1833-1849. [CrossRef] [MathSciNet] [Google Scholar]
  34. P. Lascaux and P. Lesaint, Some nonconforming finite elements for the plate bending problem. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. R-1 (1975) 9-53. [Google Scholar]
  35. B. Li and M. Luskin, Finite element analysis of microstructure for the cubic to tetragonal transformation. SIAM J. Numer. Anal. 35 (1998) 376-392. [CrossRef] [MathSciNet] [Google Scholar]
  36. B. Li and M. Luskin, Nonconforming finite element approximation of crystalline microstructure. Math. Comp. 67 (1998) 917-946. [CrossRef] [MathSciNet] [Google Scholar]
  37. B. Li and M. Luskin, Approximation of a martensitic laminate with varying volume fractions. ESAIM: M2AN 33 (1999) 67-87. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  38. Z. Li, Simultaneous numerical approximation of microstructures and relaxed minimizers. Numer. Math. 78 (1997) 21-38. [CrossRef] [MathSciNet] [Google Scholar]
  39. D.G. Luenberger, Introduction to linear and nonlinear programming. Addison-Wesley, Reading, Mass. (1973). [Google Scholar]
  40. M. Luskin, Approximation of a laminated microstructure for a rotationally invariant, double well energy density. Numer. Math. 75 (1996) 205-221. [CrossRef] [MathSciNet] [Google Scholar]
  41. M. Luskin, On the computation of crystalline microstructure. Acta Numer. 5 (1996) 191-257. [CrossRef] [Google Scholar]
  42. M. Luskin and L. Ma, Analysis of the finite element approximation of microstructure in micromagnetics. SIAM J. Numer. Anal. 29 (1992) 320-331. [CrossRef] [MathSciNet] [Google Scholar]
  43. L.S.D. Morley, The triangular equilibrium element in the solution of plate bending problems. Aero. Quart. 19 (1968) 149-169. [Google Scholar]
  44. P. Pedregal, On the numerical analysis of non-convex variational problems. Numer. Math. 74 (1996) 325-336. [CrossRef] [MathSciNet] [Google Scholar]
  45. E. Polak, Computational methods in optimization. Academic Press, New York (1971). [Google Scholar]
  46. T. Roubícek, Numerical approximation of relaxed variational problems. J. Convex Anal. 3 (1996) 329-347. [MathSciNet] [Google Scholar]
  47. H.L. Royden, Real analysis. 3rd edn, Macmillan Publishing Company, New York (1988). [Google Scholar]
  48. W. Rudin, Functional analysis. McGraw-Hill, New York (1973). [Google Scholar]
  49. Z. Shi, Error estimates of Morley element. Chinese J. Num. Math. Appl. 12 (1990) 102-108. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you