Free Access
Volume 35, Number 4, July-August 2001
Page(s) 779 - 798
Published online 15 April 2002
  1. J. Antihainen, R. Friesner and C. Leforestier, Adiabatic pseudospectral calculation of the vibrational states of the four atom molecules: Application to hydrogen peroxide. J. Chem. Phys. 102 (1995) 1270. [CrossRef] [Google Scholar]
  2. M. Azaiez, M. Dauge and Y. Maday, Méthodes spectrales et les éléments spectraux. Institut de Recherche Mathématique de Rennes, Prépublications 1994-17 (1994). [Google Scholar]
  3. I. Babuska and C. Schwab, A posteriori error estimation for hierarchic models of elliptic boundary value problems on thin domains. SIAM J. Numer. Anal. 33 (1996) 241-246. [Google Scholar]
  4. C. Bernardi and Y. Maday, Spectral methods, in Handbook of numerical analysis, Vol. V, Part 2, Ph. G. Ciarlet and J.L. Lions Eds., North-Holland, Amsterdam (1997). [Google Scholar]
  5. C. Bernardi and Y. Maday, Approximations spectrales de problèmes aux limites elliptiques. Springer, Paris, Berlin, New York (1992). [Google Scholar]
  6. G. Caloz and J. Rappaz, Numerical analysis for nonlinear and bifurcation problems, in Handbook of numerical analysis, Vol. V, Part 2, Ph.G. Ciarlet and J.L. Lions Eds., North-Holland, Amsterdam (1997). [Google Scholar]
  7. C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral methods in fluid dynamics. Springer, Berlin (1987). [Google Scholar]
  8. R. Dutray and J.L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, Tome 5. Masson, CEA, Paris (1984). [Google Scholar]
  9. R. Friesner, J. Bentley, M. Menou and C. Leforestier, Adiabatic pseudospectral methods for multidimensional vibrational potentials. J. Chem. Phys. 99 (1993) 324. [CrossRef] [Google Scholar]
  10. R. Kosloff, Time-dependent quantum-mecanical methods for molecular dynamics. J. Chem. Phys. 92 (1988) 2087. [Google Scholar]
  11. D. Kosloff and R. Kosloff, Fourier method for the time dependent Schrödinger equation as a tool in molecular dynamics. J. Comp. Phys. 52 (1983) 35. [Google Scholar]
  12. C. Leforestier, Grid representation of rotating triatomics. J. Chem. Phys. 94 (1991) 6388. [CrossRef] [Google Scholar]
  13. J.L. Lions and E. Magenes, Problèmes aux limites non-homogènes et applications. Dunod, Paris (1968). [Google Scholar]
  14. R. Verfürth, A posteriori error estimates for non-linear problems. Finite element discretisations of elliptic equations. Math. Comp. 62 (1994) 445-475 [Google Scholar]
  15. R. Verfürth, A review of a posteriori error estimates and adaptative mesh-refinement techniques. Wiley-Teubner, Stuttgart (1997). [Google Scholar]
  16. K. Yamashita, K. Mokoruma and C. Leforestier, Theoretical study of the highly vibrationally excited states of FHF-: Ab initio potential energy surface and hyperspherical formulation. J. Chem. Phys. 99 (1993) 8848. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you