Free Access
Volume 35, Number 4, July-August 2001
Page(s) 767 - 778
Published online 15 April 2002
  1. R.E. Bank and D.J. Rose, Some error estimates for the box method. SIAM J. Numer. Anal. 24 (1987) 777-787. [CrossRef] [MathSciNet] [Google Scholar]
  2. R. Belmouhoub, Modélisation tridimensionnelle de la genèse des bassins sédimentaires. Thesis, École Nationale Supérieure des Mines de Paris, France (1996). [Google Scholar]
  3. Z. Cai, On the finite volume element method. Numer. Math. 58 (1991) 713-735. [CrossRef] [MathSciNet] [Google Scholar]
  4. Z. Cai, Mandel J. and S. Mc Cormick, The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28 (1991) 392-402. [CrossRef] [MathSciNet] [Google Scholar]
  5. W.J. Coirier and K.G. Powell, A Cartesian, cell-based approach for adaptative-refined solutions of the Euler and Navier-Stokes equations. AIAA J. 0566 (1995). [Google Scholar]
  6. M. Dauge, Elliptic boundary value problems in corner domains. Lecture Notes in Math. 1341 Springer-Verlag, Berlin (1988). [Google Scholar]
  7. Y. Coudière and P. Villedieu, A finite volume scheme for the linear convection-diffusion equation on locally refined meshes, in7-th international colloquium on numerical analysis, Plovdiv, Bulgaria (1998). [Google Scholar]
  8. Y. Coudière, J.P. Vila and P. Villedieu, Convergence of a finite volume scheme for a diffusion problem, in Finite volumes for complex applications, problems and perspectives, F. Benkhaldoun and R. Vilsmeier Eds., Hermès, Paris (1996) 161-168. [Google Scholar]
  9. Y. Coudière, J.-P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two dimensional convection diffusion problem. ESAIM: M2AN 33 (1999) 493-516. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  10. Y. Coudière and P. Villedieu, Convergence of a finite volume scheme for a two dimensional diffusion convection equation on locally refined meshes. ESAIM: M2AN 34 (2000) 1109-1295. [CrossRef] [EDP Sciences] [Google Scholar]
  11. R. Eymard, T. Gallouët and R. Herbin, Convergence of finite volume schemes for semilinear convection diffusion equations. Numerische Mathematik. 82 (1999) 91-116. [Google Scholar]
  12. R. Eymard and T. Gallouët, Convergence d'un schéma de type éléments finis-volumes finis pour un système couplé elliptique-hyperbolique. RAIRO Modél. Math. Anal. Numér. 27 (1993) 843-861. [MathSciNet] [Google Scholar]
  13. R. Eymard, T. Gallouët and R. Herbin, The finite volume method, in Handbook of numerical analysis, P.G. Ciarlet and J.L. Lions, Eds., Elsevier Science BV, Amsterdam (2000) 715-1022. [Google Scholar]
  14. I. Faille, A control volume method to solve an elliptic equation on a 2D irregular meshing. Comput. Methods Appl. Mech. Engrg. 100 (1992) 275-290. [Google Scholar]
  15. P.A. Forsyth, A control volume finite element approach to NAPL groundwater contamination. SIAM J. Sci. Stat. Comput. 12 (1991) 1029-1057. [Google Scholar]
  16. P.A. Forsyth and P.H. Sammon, Quadratic convergence for cell-centered grids. Appl. Numer. Math. 4 (1988) 377-394. [CrossRef] [MathSciNet] [Google Scholar]
  17. T. Gallouët, R. Herbin and M.H. Vignal, Error estimate for the approximate finite volume solutions of convection diffusion equations with Dirichlet, Neumann or Fourier boundary conditions. SIAM J. Numer. Anal. 37 (2000) 1035-1072. [Google Scholar]
  18. B. Heinrich, Finite difference methods on irregular networks. A generalized approach to second order elliptic problems. Internat. Ser. Numer. Math. 82, Birkhäuser-Verlag, Stuttgart (1987). [Google Scholar]
  19. R. Herbin, An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh. Numer. Methods. Partial Differ. Equations 11 (1995) 165-173. [Google Scholar]
  20. R. Herbin, Finite volume methods for diffusion convection equations on general meshes, in Finite volumes for complex applications, problems and perspectives, F. Benkhaldoun and R. Vilsmeier, Eds., Hermès, Paris (1996) 153-160. [Google Scholar]
  21. F. Jacon and D. Knight, A Navier-Stokes algorithm for turbulent flows using an unstructured grid and flux difference splitting. AIAA J. 2292 (1994). [Google Scholar]
  22. R.D. Lazarov and I.D. Mishev, Finite volume methods for reaction diffusion problems, in Finite volumes for complex applications, problems and perspectives, F. Benkhaldoun and R. Vilsmeier, Eds., Hermès, Paris (1996) 233-240 . [Google Scholar]
  23. R.D. Lazarov, I.D. Mishev and P.S. Vassilevski, Finite volume methods for convection-diffusion problems. SIAM J. Numer. Anal. 33 (1996) 31-55. [CrossRef] [MathSciNet] [Google Scholar]
  24. T.A. Manteufel and A.B. White, The numerical solution of second order boundary value problem on non uniform meshes. Math. Comput. 47 (1986) 511-536. [Google Scholar]
  25. K.W. Morton and E. Süli, Finite volume methods and their analysis. IMA J. Numer. Anal. 11 (1991) 241-260. [CrossRef] [MathSciNet] [Google Scholar]
  26. D. Trujillo, Couplage espace-temps de schémas numériques en simulation de réservoir. Ph.D. Thesis, University of Pau, France (1994). [Google Scholar]
  27. P.S. Vassileski, S.I. Petrova and R.D. Lazarov, Finite difference schemes on triangular cell-centered grids with local refinement. SIAM J. Sci. Statist. Comput. 13 (1992) 1287-1313. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you