Free Access
Volume 35, Number 6, November/December 2001
Page(s) 1159 - 1183
Published online 15 April 2002
  1. J.B. Bell, C.N. Dawson and G.R. Shubin, An unsplit higher order Godunov method for scalar conservation laws in multiple dimensions. J. Comp. Phys. 17 (1992) 1-24. [Google Scholar]
  2. R. Botchorishvili, B. Perthame and A. Vasseur, Schémas d'équilibre pour des lois de conservation scalaires avec des termes sources raides. Report No. 3891, INRIA, France (2000). [Google Scholar]
  3. C. Chainais-Hillairet, First and second order schemes for a hyperbolic equation: convergence and error estimate, in Finite Volume for Complex Applications Problems and Perspectives, Benkhaldoun and Vilsmeier, Eds., Hermes, Paris (1997) 137-144. [Google Scholar]
  4. S. Champier, T. Gallouët and R. Herbin, Convergence of an upstream finite volume scheme for a nonlinear hyperbolic equation on a triangular mesh. Numer. Math. 66 (1993) 139-157. [CrossRef] [MathSciNet] [Google Scholar]
  5. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978). [Google Scholar]
  6. B. Cockburn, On the continuity in BV of the L2-projection into finite element spaces. Math. Comp. 57 (1991) 551-561. [MathSciNet] [Google Scholar]
  7. B. Cockburn, F. Coquel and P. Le Floch, An error estimate for finite volume multidimensional conservation laws. Tech. Report No. 285 CMAPX, École Polytechnique, France (1993). [Google Scholar]
  8. B. Cockburn and C.W. Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws: the multidimensional case. Math. Comp. 54 (1990) 545-581. [MathSciNet] [Google Scholar]
  9. P. Collella, Multidimensional upwind methods for hyperbolic conservation laws. J. Comp. Phys. 87 (1990) 171-200. [CrossRef] [Google Scholar]
  10. F. Coquel and P. Le Floch, Convergence of finite difference schemes for conservation laws in several space dimensions: the corrected antidiffusive flux approach. Math. Comp. 57 (1991) 169-210. [CrossRef] [MathSciNet] [Google Scholar]
  11. R. Dautray and J.-L. Lions, Analyse numérique et calcul numérique pour les sciences et les techniques. Masson, Paris (1984). [Google Scholar]
  12. H. Deconinck, R. Struijs and G. Bourgeois, Compact advection schemes on unstructured grids, in Computational Fluid Dynamics Lect. Ser. 1993-04, von Karman Institute, Rhode-Saint-Genèse, Belgium (1993). [Google Scholar]
  13. B. Després and F. Lagoutière, Un schéma non linéaire anti-dissipatif pour l'équation d'advection linéaire. C. R. Acad. Sci., Paris, Sér. I, Math. 328 (1999) 939-944. [Google Scholar]
  14. B. Després and F. Lagoutière, Contact discontinuity capturing schemes for linear advection and compressible gas dynamics. In preparation. [Google Scholar]
  15. R.J. DiPerna, Measure value solutions to conservation laws. Arch. Rational Mech. Anal. 88 (1985) 223-270. [CrossRef] [MathSciNet] [Google Scholar]
  16. F. Dubois and G. Mehlman, A non-parametrized entropy correction for Roe's approximate Riemann solver. Numer. Math. 73 (1996) 169-208. [CrossRef] [MathSciNet] [Google Scholar]
  17. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. Tech. Report No. 97-19, LATP, UMR 6632, Marseille, France. To appear in Handbook of Numerical Analysis, P.G. Ciarlet and J.-L. Lions, Eds., Elsevier, Amsterdam. [Google Scholar]
  18. E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Basel (1984). [Google Scholar]
  19. E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, in Applied Mathematical Sciences 118, Springer, New York (1996). [Google Scholar]
  20. E. Godlewski and P.-A. Raviart, Hyperbolic systems of conservation laws, in Mathématiques & Applications 3-4, Ellipses, Paris (1991). [Google Scholar]
  21. H. Harten, On a class of high resolution total-variation-stable finite-difference schemes. SIAM J. Numer. Anal. 21 (1984) 1-23. [CrossRef] [MathSciNet] [Google Scholar]
  22. H. Harten, High resolution schemes for hyperbolic conservation laws. J. Comp. Phys. 49 (1983) 357-393. [Google Scholar]
  23. A. Harten, S. Osher, B. Engquist and S. Chakravarthy, Some results on uniformly High Order Accurate Essentially Non-oscillatory Schemes, in Adv. Numer. Appl. Math., ICASE Report No. 86-18, J.C. South, Jr and M.Y. Hussaini, Eds. (1986) 383-436; J. Appl. Numer. Math. 2 (1986) 347-377. [Google Scholar]
  24. S.N. Kruzkov, Generalized solutions of the Cauchy problem in the large for non linear equations of first order. Dokl. Akad. Nauk SSSR 187 (1970) 29-32. English translation in Soviet Math. Dokl. 10 (1969). [Google Scholar]
  25. N.N. Kuznetzov, Finite difference schemes for multidimensional first order quasi-linear equations in classes of discontinuous functions. Probl. Math. Phys. Vych. Mat., Nauka, Moscow (1977) 181-194. [Google Scholar]
  26. F. Lagoutière, Modélisation mathématique et résolution numérique de problèmes de fluides compressibles à plusieurs constituants. Ph.D. Thesis, Université Pierre et Marie Curie, Paris (2000). [Google Scholar]
  27. R.J. LeVeque, Numerical Methods for Conservation Laws. ETHZ Zürich, Birkhäuser, Basel (1992). [Google Scholar]
  28. R.J. LeVeque, High-resolution conservative algorithms for advection in incompressible flows. SIAM J. Numer. Anal. 33 (1996) 627-665. [CrossRef] [MathSciNet] [Google Scholar]
  29. P.-L. Lions, B. Perthame and E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations. J. Amer. Math. Soc. 7 (1994) 169-191. [Google Scholar]
  30. S. Osher and E. Tadmor, On the convergence of difference approximations to scalar conservation laws. Math. Comp. 50 (1988) 19-51. [Google Scholar]
  31. P.L. Roe, Generalized formulations of TVD Lax-Wendroff schemes. ICASE Report No. 84-53, ICASE, NASA Langley Research Center, Hampton, VA (1984). [Google Scholar]
  32. P.L. Roe and D. Sidilkover, Optimum positive linear schemes for advection in two and three dimensions. SIAM J. Numer. Anal. 29 (1992) 1542-1568. [CrossRef] [MathSciNet] [Google Scholar]
  33. P.K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Num. Anal. 21 (1984) 995-1011. [Google Scholar]
  34. A. Szepessy, Convergence of a streamline diffusion finite element method for conservation law with boundary conditions. RAIRO Modél. Math. Anal. Numér. 25 (1991) 749-783. [MathSciNet] [Google Scholar]
  35. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag, Berlin, Heidelberg, New York (1997). [Google Scholar]
  36. B. Van Leer, Towards the ultimate conservative difference scheme, V. J. Comput. Phys 32 (1979) 101-136. [CrossRef] [Google Scholar]
  37. R.S. Varga, Matrix Iterative Analysis. 2. Printing, in Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, NJ (1963). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you