Free Access
Issue
ESAIM: M2AN
Volume 36, Number 1, January/February 2002
Page(s) 87 - 119
DOI https://doi.org/10.1051/m2an:2002004
Published online 15 April 2002
  1. S. Abarbanel and D. Gottlieb, A mathematical analysis of the PML method. J. Comput. Phys. 134 (1997) 357-363. [Google Scholar]
  2. S. Abarbanel and D. Gottlieb, On the construction and analysis of absorbing layers in CEM. Appl. Numer. Math. 27 (1998) 331-340. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.P. Bérenger, A Perfectly Matched Layer for the Absorption of Electromagnetic Waves. J. Comput. Phys. 114 (1994) 185-200. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  4. F. Collino and P. Monk, Conditions et couches absorbantes pour les équations de Maxwell, in G. Cohen and P. Joly, Aspects récents en méthodes numériques pour les équations de Maxwell, Eds. École des Ondes, Chapter 4, INRIA, Rocquencourt (1998). [Google Scholar]
  5. J.W. Goodrich and T. Hagstrom, A comparison of two accurate boundary treatments for computational aeroacoustics. AIAA Paper-1585 (1997). [Google Scholar]
  6. J.S. Hesthaven, On the Analysis and Construction of Perfectly Matched Layers for the Linearized Euler Equations. J. Comput. Phys. 142 (1998) 129-147. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  7. F.Q. Hu, On absorbing boundary conditions for linearized euler equations by a perfectly matched layer. J. Comput. Phys. 129 (1996) 201-219. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  8. T. Kato, Perturbation Theory for Linear Operators. Springer (1995). [Google Scholar]
  9. H.-O. Kreiss and J. Lorenz, Initial-Boundary Value Problems and the Navier-Stokes Equations, in Pure Appl. Math. 136, Academic Press, Boston, USA (1989). [Google Scholar]
  10. J. Métral and O. Vacus, Caractère bien posé du problème de Cauchy pour le système de Bérenger. C.R. Acad. Sci. I Math. 10 (1999) 847-852. [Google Scholar]
  11. P.G. Petropoulos, L. Zhao and A.C. Cangellaris, A reflectionless sponge layer absorbing boundary condition for the solution of Maxwell's equations with high-order staggered finite difference schemes. J. Comput. Phys. 139 (1998) 184-208. [CrossRef] [MathSciNet] [Google Scholar]
  12. A.N. Rahmouni, Des modèles PML bien posés pour divers problèmes hyperboliques. Ph.D. thesis, Université Paris Nord-Paris XIII (2000). [Google Scholar]
  13. Allen Taflove, Computational electrodynamics: the finite-difference time-domain method. Artech House (1995). [Google Scholar]
  14. E. Turkel and A. Yefet, Absorbing PML boundary layers for wave-like equations. Appl. Numer. Math. 27 (1998) 533-557. [CrossRef] [MathSciNet] [Google Scholar]
  15. L. Zhao and A.C. Cangellaris, A General Approach for the Development of Unsplit-Field Time-Domain Implementations of Perfectly Matched Layers for FDTD Grid Truncation. IEEE Microwave and Guided Letters 6 May 1996. [Google Scholar]
  16. R.W. Ziolkowski, Time-derivative lorentz material model-based absorbing boundary condition. IEEE Trans. Antennas Propagation 45 (1997) 1530-1535. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you