Free Access
Issue
ESAIM: M2AN
Volume 36, Number 1, January/February 2002
Page(s) 121 - 142
DOI https://doi.org/10.1051/m2an:2002005
Published online 15 April 2002
  1. I. Babuska and J. Osborn, Eigenvalue problems. In Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.L. Lions, Eds., North Holland, Amsterdam (1991). [Google Scholar]
  2. A. Bermúdez, P. Gamallo, L. Hervella-Nieto and R. Rodríguez, Finite element analysis of the elastoacoustic problem using the pressure in the fluid. Preprint DIM 2001-05, Universidad de Concepción, Concepción, Chile (submitted). [Google Scholar]
  3. F. Bourquin, Analysis and comparison of several component mode synthesis methods on one-dimensional domains. Numer. Math. 58 (1990) 11-34. [CrossRef] [MathSciNet] [Google Scholar]
  4. F. Bourquin, Component mode synthesis and eigenvales of second order operators: Discretization and algorithm. RAIRO Modél. Math. Anal. Numér. 26 (1992) 385-423. [MathSciNet] [Google Scholar]
  5. F. Bourquin, A pure displacement dynamic substructuring method with accurate pressure for elastoacoustics. Laboratoire Central des Ponts et Chaussées, R/94/05/7 (1994). [Google Scholar]
  6. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). [Google Scholar]
  7. R. Craig and M.C.C. Bampton, Coupling of substructures for dynamic analysis. AIAA J. 6 (1968) 1313-1321. [CrossRef] [Google Scholar]
  8. R.L. Goldman, Vibration analysis of dynamic analysis. AIAA J. 7 (1969) 1152-1154. [CrossRef] [Google Scholar]
  9. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). [Google Scholar]
  10. P. Grisvard, Caractérisation de quelques espaces d'interpolation. Arch. Rat. Mech. Anal. 25 (1967) 40-63. [CrossRef] [MathSciNet] [Google Scholar]
  11. L. Hervella-Nieto, Métodos de elementos finitos y reducción modal para problemas de interacción fluido-estructura. Ph.D. thesis, Publicaciones del Departamento de Matemática Aplicada, 27, Universidad de Santiago de Compostela (2000). [Google Scholar]
  12. W.C. Hurty, Dynamic analysis of structural systems using component modes. AIAA J. 4 (1965) 678-685. [Google Scholar]
  13. W.G. Kolata, Approximation in variationally posed eigenvalues problems. Numer. Math. 29 (1978) 159-171. [CrossRef] [Google Scholar]
  14. J.L. Lions, Théorèmes de trace et d'interpolation (I). Ann. Scuola Norm. Sup. Pisa 13 (1959) 389-403. [MathSciNet] [Google Scholar]
  15. H.J.-P. Morand and R. Ohayon, Interactions Fluides-Structure. Masson, Paris (1996). [Google Scholar]
  16. H.J.-P. Morand and R. Ohayon, Substructure variational analysis of the vibration of coupled fluid-structure systems. Finite element results. Internat. J. Numer. Methods Engrg. 14 (1979) 741-755. [CrossRef] [Google Scholar]
  17. J. Necas, Les Méthodes Directes en Théorie des Équations Elliptiques. Masson, Paris (1967). [Google Scholar]
  18. G. Sandberg, A new strategy for solving fluid-structure problems. Internat. J. Numer. Methods Engrg. 38 (1995) 357-370. [CrossRef] [MathSciNet] [Google Scholar]
  19. J. Wandinger, Analysis of small vibrations of coupled fluid-structure systems. Z. Angew. Math. Mech. 74 (1994) 37-42. [CrossRef] [MathSciNet] [Google Scholar]
  20. J.-L. Zolesio, Interpolation d'espaces de Sobolev avec conditions aux limites de type mêlé. C. R. Acad. Sci. Paris Série A 285 (1982) 621-624. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you