Free Access
Issue
ESAIM: M2AN
Volume 36, Number 3, May/June 2002
Page(s) 489 - 503
DOI https://doi.org/10.1051/m2an:2002022
Published online 15 August 2002
  1. M. Ainsworth and J.T. Oden, A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Engrg. 142 (1997) 1-88. [CrossRef] [MathSciNet] [Google Scholar]
  2. L. Angermann, A posteriori error estimates for FEM with violated Galerkin orthogonality. Preprint 27/98, Otto-von-Guericke Universität Magdeburg, Fakultät für Mathematik (1998). [Google Scholar]
  3. R. Becker, M. Braack, R. Rannacher and C. Waguet, Fast and reliable solution of the Navier-Stokes equations including chemistry. Comput. Vis. Sci. 2 (1999) 107-122. [CrossRef] [Google Scholar]
  4. R. Becker and R. Rannacher, A feed-back approach to error control in finite element methods: Basic analysis and examples. East-West J. Numer. Math. 4 (1996) 237-264. [MathSciNet] [Google Scholar]
  5. C. Bernardi and V. Girault, A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35 (1998) 1893-1916. [CrossRef] [MathSciNet] [Google Scholar]
  6. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Vol. 15 of Springer Ser. Comput. Math. Springer-Verlag (1991). [Google Scholar]
  7. Z. Cai, Jr. J. Douglas and X. Ye, A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations. Calcolo 36 (1999) 215-232. [CrossRef] [MathSciNet] [Google Scholar]
  8. C. Carstensen, S. Bartels and S. Jansche, A posteriori error estimates for nonconforming finite element methods. Berichtsreihe des Mathematischen Seminars Kiel, Report Nr. 00-13, Christian-Albrechts-Universität zu Kiel (2000). [Google Scholar]
  9. M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. RAIRO Anal. Numér. 7 (1973) 33-76. [Google Scholar]
  10. E. Dari, R. Durán and C. Padra, Error estimators for nonconforming finite element approximations of the Stokes problem. Math. Comp. 64 (1995) 1017-1033. [CrossRef] [MathSciNet] [Google Scholar]
  11. E. Dari, R. Durán, C. Padra and V. Vampa, A posteriori error estimators for nonconforming finite element methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 385-400. [Google Scholar]
  12. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes equations. Springer-Verlag, Berlin, Heidelberg, New York (1986). [Google Scholar]
  13. J.-P. Hennart, J. Jaffre and J.E. Roberts, A constructive method for deriving finite elements of nodal type. Numer. Math. 53 (1988) 701-738. [CrossRef] [MathSciNet] [Google Scholar]
  14. R.H.W. Hoppe and B. Wohlmuth, Element-oriented and edge-oriented local error estimators for nonconforming finite element methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 237-263. [MathSciNet] [Google Scholar]
  15. V. John, A posteriori error estimators for the nonconforming P1-finite element discretization of convection-diffusion equations. Preprint 10/97, Otto-von-Guericke Universität Magdeburg, Fakultät für Mathematik (1997). http://www-ian.math.uni-magdeburg.de/home/john/. [Google Scholar]
  16. V. John, A posteriori L2-error estimates for the nonconforming P1/P0-finite element discretization of the Stokes equations. J. Comput. Appl. Math. 96 (1998) 99-116. [CrossRef] [MathSciNet] [Google Scholar]
  17. G. Kanschat and F.-T. Suttmeier, A posteriori error estimates for nonconforming finite element schemes. Calcolo 36 (1999) 129-141. [CrossRef] [MathSciNet] [Google Scholar]
  18. R. Rannacher, Error control in finite element computations. Preprint 98-54, Universität Heidelberg, IWR (1998). http://www.iwr.uni-heidelberg.de/. [Google Scholar]
  19. R. Rannacher, Adaptive Galerkin finite element methods for partial differential equations. J. Comput. Appl. Math. 128 (2001) 205-233. [CrossRef] [MathSciNet] [Google Scholar]
  20. R. Rannacher and S. Turek, Simple nonconforming quadrilateral stokes element. Numer. Methods Partial Differential Equations 8 (1992) 97-111. [Google Scholar]
  21. F. Schieweck, A parallel multigrid algorithm for solving the Navier-Stokes equations. IMPACT Comput. Sci. Eng. 5 (1993) 345-378. [CrossRef] [Google Scholar]
  22. F. Schieweck, Parallele Lösung der stationären inkompressiblen Navier-Stokes Gleichungen. Otto-von-Guericke Universität Magdeburg, Fakultät für Mathematik (1996). Habilitation. http://www-ian.math.uni-magdeburg.de/home/schieweck. [Google Scholar]
  23. F. Schieweck, A general transfer operator for arbitrary finite element spaces. Preprint 25/00, Otto-von-Guericke Universität Magdeburg, Fakultät für Mathematik (2000). http://www-ian.math.uni-magdeburg.de/home/schieweck. [Google Scholar]
  24. L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483-493. [Google Scholar]
  25. R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner series in advances in numerical mathematics, Wiley-Teubner (1996). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you