Free Access
Volume 37, Number 3, May-June 2003
Page(s) 495 - 514
Published online 15 April 2004
  1. Y. Achdou and Y. Maday, The mortar element method with overlapping subdomains. SIAM J. Numer. Anal. 40 (2002) 601–628. [CrossRef] [MathSciNet] [Google Scholar]
  2. R. Becker, P. Hansbo and R. Stenberg, A finite element method for domain decomposition with non-matching grids. ESAIM: M2AN 37 (2003) 209–225. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  3. M.J. Berger, On conservation at grid interfaces. SIAM J. Numer. Anal. 24 (1987) 967–984. [CrossRef] [MathSciNet] [Google Scholar]
  4. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, Berlin (1994). [Google Scholar]
  5. F. Brezzi, J.-L. Lions and O. Pironneau, Analysis of a Chimera method. C. R. Acad. Sci. Paris Sér. I Math. 332 (2001) 655–660. [Google Scholar]
  6. X.-C. Cai, M. Dryja and M. Sarkis, Overlapping nonmatching grid mortar element methods for elliptic problems. SIAM J. Numer. Anal. 36 (1999) 581–606. [CrossRef] [MathSciNet] [Google Scholar]
  7. G. Chesshire and W.D. Henshaw, Composite overlapping meshes for the solution of partial-differential equations. J. Comput. Phys. 90 (1990) 1–64. [CrossRef] [MathSciNet] [Google Scholar]
  8. V. Girault and P.-A. Raviart, Finite Element Approximation of the Navier-Stokes Equations. Springer-Verlag, Berlin (1979). [Google Scholar]
  9. A. Hansbo and P. Hansbo, An unfitted finite element method, based on Nitsche's method, for elliptic interface problems. Comput. Methods Appl. Mech. Engrg. 191 (2002) 5537–5552. [CrossRef] [MathSciNet] [Google Scholar]
  10. R.D. Lazarov, J.E. Pasciak, J. Schöberl and P.S. Vassilevski, Almost optimal interior penalty discontinuous approximations of symmetric elliptic problems on non-matching grids. Technical Report, ISC-01-05-MATH (2001). [Google Scholar]
  11. R.D. Lazarov, S.Z. Tomov and P.S. Vassilevski, Interior penalty discontinuous approximations of elliptic problems. Comput. Meth. Appl. Math. 1 (2001) 367–382. [Google Scholar]
  12. J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1971) 9–15. [Google Scholar]
  13. L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 190 (1990) 483–493. [Google Scholar]
  14. R. Stenberg, Mortaring by a method of J.A. Nitsche, in Computational Mechanics: New Trends and Applications, S. Idelsohn, E. Onate and E. Dvorkin Eds., CIMNE, Barcelona (1998). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you