Free Access
Issue
ESAIM: M2AN
Volume 38, Number 1, January-February 2004
Page(s) 37 - 71
DOI https://doi.org/10.1051/m2an:2004003
Published online 15 February 2004
  1. R.A. Adams, Sobolev Spaces. Academic Press, New York (1978). [Google Scholar]
  2. H. Amann, Linear and Quasilinear Parabolic Problems, Vol. I: Abstract Linear Theory, Monographs Math. Birkhäuser, Basel 89 (1995). [Google Scholar]
  3. O.E. Barndorff-Nielsen, Exponentially decreasing distributions for the logarithm of particle size. Proc. Roy. Soc. London A 353 (1977) 401–419. [CrossRef] [Google Scholar]
  4. O.E. Barndorff-Nielsen, Normal inverse Gaussian distributions and stochastic volatility modelling. Scand. J. Statis. 24 (1997) 1–14. [CrossRef] [MathSciNet] [Google Scholar]
  5. O.E. Barndorff-Nielsen and N. Shepard, Non-Gaussian Ornstein-Uhlenbeck based models and some of their uses in financial economics. J. Roy. Stat. Soc. B 63 (2001) 167–241. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Bensoussan and J.-L. Lions, Impulse control and quasi-variational inequalities. Gauthier-Villars, Paris (1984). [Google Scholar]
  7. J. Bertoin, Lévy processes. Cambridge University Press (1996). [Google Scholar]
  8. F. Black and M. Scholes, The Pricing of Options and Corporate Liabilities. J. Political Economy 81 (1973) 637–654. [CrossRef] [Google Scholar]
  9. S. Boyarchenko and S. Levendorski, Barrier options and touch-and-out options under regular Lévy processes of exponential type. Ann. Appl. Probab. 12 (2002) 1261–1298. [CrossRef] [MathSciNet] [Google Scholar]
  10. S. Boyarchenko and S. Levendorski, Option pricing for truncated Lévy processes. Int. J. Theor. Appl. Finance 3 (2000) 549-552. [CrossRef] [Google Scholar]
  11. P. Carr and D. Madan, Option valuation using the FFT. J. Comp. Finance 2 (1999) 61–73. [Google Scholar]
  12. P. Carr, H. Geman, D.B. Madan and M. Yor, The fine structure of asset returns: an empirical investigation. J. Business 75 (2002) 305–332. [CrossRef] [Google Scholar]
  13. T. Chan, Pricing contingent claims on stocks driven by Lévy processes. Ann. Appl. Probab. 9 (1999) 504–528. [CrossRef] [MathSciNet] [Google Scholar]
  14. A. Cohen, Wavelet methods for operator equations, P.G. Ciarlet and J.L. Lions Eds., Elsevier, Amsterdam, Handb. Numer. Anal. VII (2000). [Google Scholar]
  15. R. Cont and P. Tankov, Financial modelling with jump processes. Chapman and Hall/CRC Press (2003). [Google Scholar]
  16. F. Delbaen and W. Schachermayer, The variance-optimal martingale measure for continuous processes. Bernoulli 2 (1996) 81–105. [CrossRef] [MathSciNet] [Google Scholar]
  17. F. Delbaen, P. Grandits, T. Rheinländer, D. Samperi, M. Schweizer and C. Stricker, Exponential hedging and entropic penalties. Math. Finance 12 (2002) 99–123. [CrossRef] [MathSciNet] [Google Scholar]
  18. E. Eberlein, Application of generalized hyperbolic Lévy motions to finance, in Lévy Processes: Theory and Applications, O.E. Barndorff-Nielsen, T. Mikosch and S. Resnick Eds., Birkhäuser (2001) 319–337. [Google Scholar]
  19. H. Föllmer and M. Schweizer, Hedging of contingent claims under incomplete information, in Applied Stochastic Analysis, M.H.A. Davis and R.J. Elliot Eds., Gordon and Breach New York (1991) 389–414. [Google Scholar]
  20. J. Jacod and A.N. Shiryaev, Limit Theorems for Stochastic Processes. Springer-Verlag, Berlin (1987). [Google Scholar]
  21. P. Jaillet, D. Lamberton and B. Lapeyre, Variational inequalities and the pricing of American options. Acta Appl. Math. 21 (1990) 263–289. [CrossRef] [MathSciNet] [Google Scholar]
  22. R. Kangro and R. Nicolaides, Far field boundary conditions for Black–Scholes equations. SIAM J. Numer. Anal. 38 (2000) 1357–1368. [CrossRef] [MathSciNet] [Google Scholar]
  23. I. Karatzas and S.E. Shreve, Methods of Mathematical Finance. Springer-Verlag (1999). [Google Scholar]
  24. G. Kou, A jump diffusion model for option pricing. Mange. Sci. 48 (2002) 1086–1101. [Google Scholar]
  25. D. Lamberton and B. Lapeyre, Introduction to Stochastic Calculus Applied to Finance. Chapman & Hall (1997). [Google Scholar]
  26. J.L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Springer-Verlag, Berlin (1972). [Google Scholar]
  27. D.B. Madan and E. Seneta, The variance gamma (V.G.) model for share market returns. J. Business 63 (1990) 511–524. [CrossRef] [Google Scholar]
  28. D.B. Madan, P. Carr and E. Chang, The variance gamma process and option pricing. Eur. Finance Rev. 2 (1998) 79–105. [CrossRef] [Google Scholar]
  29. A.M. Matache, T. von Petersdorff and C. Schwab, Fast deterministic pricing of options on Lévy driven assets. Report 2002-11, Seminar for Applied Mathematics, ETH Zürich. http://www.sam.math.ethz.ch/reports/details/include.shtml?2002/2002-11.html [Google Scholar]
  30. A.M. Matache, P.A. Nitsche and C. Schwab, Wavelet Galerkin pricing of American options on Lévy driven assets. Research Report 2003-06, Seminar for Applied Mathematics, ETH Zürich, http://www.sam.math.ethz.ch/reports/details/include.shtml?2003/2003-06.html [Google Scholar]
  31. R.C. Merton, Option pricing when the underlying stocks are discontinuous. J. Financ. Econ. 5 (1976) 125–144. [CrossRef] [Google Scholar]
  32. D. Nualart and W. Schoutens, Backward stochastic differential equations and Feynman-Kac formula for Lévy processes, with applications in finance. Bernoulli 7 (2001) 761–776. [CrossRef] [MathSciNet] [Google Scholar]
  33. A. Pazy, Semigroups of linear operators and applications to partial differential equations. Appl. Math. Sci. Springer-Verlag, New York 44 (1983). [Google Scholar]
  34. T. von Petersdorff and C. Schwab, Fully discrete multiscale Galerkin BEM, in Multiresolution Analysis and Partial Differential Equations, W. Dahmen, P. Kurdila and P. Oswald Eds., Academic Press, New York, Wavelet Anal. Appl. 6 (1997) 287–346. [Google Scholar]
  35. K. Prause, The Generalized Hyperbolic Model: Estimation, Financial Derivatives, and Risk Measures. Ph.D. thesis Albert-Ludwigs-Universität Freiburg i.Br. (1999). [Google Scholar]
  36. P. Protter, Stochastic Integration and Differential Equations. Springer-Verlag (1990). [Google Scholar]
  37. S. Raible, Lévy processes in Finance: Theory, Numerics, and Empirical Facts. Ph.D. thesis Albert-Ludwigs-Universität Freiburg i.Br. (2000). [Google Scholar]
  38. K.-I. Sato, Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press (1999). [Google Scholar]
  39. D. Schötzau and C. Schwab, hp-discontinuous Galerkin time-stepping for parabolic problems. C.R. Acad. Sci. Paris 333 (2001) 1121–1126. [Google Scholar]
  40. W. Schoutens, Lévy Processes in Finance. Wiley Ser. Probab. Stat., Wiley Publ. (2003). [Google Scholar]
  41. T. von Petersdorff and C. Schwab, Wavelet-discretizations of parabolic integro-differential equations. SIAM J. Numer. Anal. 41 (2003) 159–180. [CrossRef] [MathSciNet] [Google Scholar]
  42. T. von Petersdorff and C. Schwab, Numerical solution of parabolic equations in high dimensions. Report NI03013-CPD, Isaac Newton Institute for the Mathematical Sciences, Cambridge, UK (2003), http://www.newton.cam.ac.uk/preprints2003.html, ESAIM: M2AN 38 (2004) 93–127. [Google Scholar]
  43. X. Zhang, Analyse Numerique des Options Américaines dans un Modèle de Diffusion avec Sauts. Ph.D. thesis, École Normale des Ponts et Chaussées (1994). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you