Free Access
Issue
ESAIM: M2AN
Volume 38, Number 1, January-February 2004
Page(s) 73 - 92
DOI https://doi.org/10.1051/m2an:2004004
Published online 15 February 2004
  1. P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neuß, H. Rentz–Reichert and C. Wieners, UG – a flexible software toolbox for solving partial differential equations. Comput. Vis. Sci. 1 (1997) 27–40. [CrossRef] [Google Scholar]
  2. F. Ben Belgacem, The mortar finite element method with Lagrange multipliers. Numer. Math. 84 (1999) 173–197. [CrossRef] [MathSciNet] [Google Scholar]
  3. F. Ben Belgacem and Y. Maday, The mortar element method for three dimensional finite elements. RAIRO Modél. Math. Anal. Numér. 31 (1997) 289–302. [MathSciNet] [Google Scholar]
  4. C. Bernardi, N. Debit and Y. Maday, Coupling finite element and spectral methods: First results. Math. Comp. 54 (1990) 21–39. [CrossRef] [Google Scholar]
  5. C. Bernardi, Y. Maday and A.T. Patera, Domain decomposition by the mortar element method, in Asymptotic and numerical methods for partial differential equations with critical parameters, H.G. Kaper and M. Garbey Eds., NATO ASI Series 39 (1993) 269–286. [Google Scholar]
  6. C. Bernardi, Y. Maday and A.T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Nonlinear partial differential equations and their applications, H. Brezzi and J.-L. Lions Eds., Pitman, Paris (1994) 13–51. [Google Scholar]
  7. D. Braess and W. Dahmen, Stability estimates of the mortar finite element method for 3–dimensional problems. East–West J. Numer. Math. 6 (1998) 249–264. [Google Scholar]
  8. D. Braess, W. Dahmen and C. Wieners, A multigrid algorithm for the mortar finite element method. SIAM J. Numer. Anal. 37 (1999) 48–69. [CrossRef] [MathSciNet] [Google Scholar]
  9. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994). [Google Scholar]
  10. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer-Verlag, New York (1991). [Google Scholar]
  11. F. Brezzi and D. Marini, Error estimates for the three-field formulation with bubble stabilization. Math. Comp 70 (2001) 911–934. [CrossRef] [MathSciNet] [Google Scholar]
  12. F. Brezzi, L. Franca, D. Marini and A. Russo, Stabilization techniques for domain decomposition methods with non-matching grids, in Proc. of the 9th International Conference on Domain Decomposition, P. Bjørstad, M. Espedal and D. Keyes Eds., Domain Decomposition Press, Bergen (1998) 1–11. [Google Scholar]
  13. A. Buffa, Error estimate for a stabilised domain decomposition method with nonmatching grids. Numer. Math. 90 (2002) 617–640. [CrossRef] [MathSciNet] [Google Scholar]
  14. J. Gopalakrishnan, On the mortar finite element method. Ph.D. thesis, Texas A&M University (1999). [Google Scholar]
  15. C. Kim, R.D. Lazarov, J.E. Pasciak and P.S. Vassilevski, Multiplier spaces for the mortar finite element method in three dimensions. SIAM J. Numer. Anal. 39 (2000) 519–538. [CrossRef] [MathSciNet] [Google Scholar]
  16. B.P. Lamichhane and B.I. Wohlmuth, Higher order dual Lagrange multiplier spaces for mortar finite element discretizations. CALCOLO 39 (2002) 219–237. [CrossRef] [MathSciNet] [Google Scholar]
  17. P. Seshaiyer and M. Suri, Uniform hp convergence results for the mortar finite element method. Math. of Comput. 69 (2000) 521–546. [CrossRef] [Google Scholar]
  18. R. Stevenson, Locally supported, piecewise polynomial biorthogonal wavelets on non-uniform meshes. Constr. Approx. 19 (2003) 477–508. [CrossRef] [MathSciNet] [Google Scholar]
  19. C. Wieners and B.I. Wohlmuth, The coupling of mixed and conforming finite element discretizations, in Proc. of the 10th International Conference on Domain Decomposition, J. Mandel, C. Farhat and X. Cai Eds., AMS, Contemp. Math. (1998) 546–553. [Google Scholar]
  20. C. Wieners and B.I. Wohlmuth, Duality estimates and multigrid analysis for saddle point problems arising from mortar discretizations. SISC 24 (2003) 2163–2184. [Google Scholar]
  21. B.I. Wohlmuth, Discretization Methods and Iterative Solvers Based on Domain Decomposition. Lect. Notes Comput. Sci. 17, Springer, Heidelberg (2001). [Google Scholar]
  22. B.I. Wohlmuth and R.H. Krause, Multigrid methods based on the unconstrained product space arising from mortar finite element discretizations. SIAM J. Numer. Anal. 39 (2001) 192–213. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you