Free Access
Issue |
ESAIM: M2AN
Volume 38, Number 3, May-June 2004
|
|
---|---|---|
Page(s) | 541 - 561 | |
DOI | https://doi.org/10.1051/m2an:2004025 | |
Published online | 15 June 2004 |
- P. Andries, P. Le Tallec, J.P. Perlat and B. Perthame, The Gaussian-BGK model of Boltzmann equation with small Prandtl number. Eur. J. Mech. B Fluids 19 (2000) 813–830. [CrossRef] [MathSciNet] [Google Scholar]
- L. Arkeryd, On the Boltzmann equation. Arch. Rational Mech. Anal. 45 (1972) 1–34. [MathSciNet] [Google Scholar]
- F. Bouchut, C. Bourdarias and B. Perthame, An example of MUSCL method satisfying all the entropy inequalities. C.R. Acad Sc. Paris, Serie I 317 (1993) 619–624. [Google Scholar]
- F. Coquel and P. LeFloch, An entropy satisfying muscl scheme for systems of conservation laws. Numerische Math. 74 (1996) 1–34. [CrossRef] [Google Scholar]
- I. Csiszár, I-divergence geometry of probability distributions and minimization problems Sanov property. Ann. Probab. 3 (1975) 146–158. [CrossRef] [Google Scholar]
- R. DiPerna and P.-L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability. Ann. Math. 130 (1989) 321–366. [CrossRef] [Google Scholar]
- H. Grad, On the kinetic theory of rarefied gases. Comm. Pure Appl. Math. 2 (1949) 331–407. [Google Scholar]
- M. Junk, Domain of definition of Levermore's five moments system. J. Stat. Phys. 93 (1998) 1143-1167. [CrossRef] [Google Scholar]
- M. Junk, Maximum entropy for reduced moment problems. M3AS 10 (2000) 1001–1025. [Google Scholar]
- C. Léonard, Some results about entropic projections, in Stochastic Analysis and Mathematical Analysis, Vol. 50, Progr. Probab., Birkhaüser, Boston, MA (2001) 59–73. [Google Scholar]
- C.D. Levermore, Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83 (1996) 1021–1065. [Google Scholar]
- L. Mieussens, Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamics. Math. Models Methods Appl. Sci. 10 (2000) 1121–1149. [Google Scholar]
- A.J. Povzner, The Boltzmann equation in the kinetic theory of gases. Amer. Math. Soc. Trans. 47 (1965) 193–214. [Google Scholar]
- F. Rogier and J. Schneider, A Direct Method for Solving the Boltzmann Equation. Proc. Colloque Euromech n0287 Discrete Models in Fluid Dynamics, Transport Theory Statist. Phys. 23 (1994) 1–3. [Google Scholar]
- C. Villani, Fisher information bounds for Boltzmann's collision operator. J. Math. Pures Appl. 77 (1998) 821–837. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.