Free Access
Volume 38, Number 3, May-June 2004
Page(s) 541 - 561
Published online 15 June 2004
  1. P. Andries, P. Le Tallec, J.P. Perlat and B. Perthame, The Gaussian-BGK model of Boltzmann equation with small Prandtl number. Eur. J. Mech. B Fluids 19 (2000) 813–830. [CrossRef] [MathSciNet]
  2. L. Arkeryd, On the Boltzmann equation. Arch. Rational Mech. Anal. 45 (1972) 1–34. [MathSciNet]
  3. F. Bouchut, C. Bourdarias and B. Perthame, An example of MUSCL method satisfying all the entropy inequalities. C.R. Acad Sc. Paris, Serie I 317 (1993) 619–624.
  4. F. Coquel and P. LeFloch, An entropy satisfying muscl scheme for systems of conservation laws. Numerische Math. 74 (1996) 1–34. [CrossRef]
  5. I. Csiszár, I-divergence geometry of probability distributions and minimization problems Sanov property. Ann. Probab. 3 (1975) 146–158. [CrossRef]
  6. R. DiPerna and P.-L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability. Ann. Math. 130 (1989) 321–366. [CrossRef]
  7. H. Grad, On the kinetic theory of rarefied gases. Comm. Pure Appl. Math. 2 (1949) 331–407. [CrossRef] [MathSciNet]
  8. M. Junk, Domain of definition of Levermore's five moments system. J. Stat. Phys. 93 (1998) 1143-1167. [CrossRef]
  9. M. Junk, Maximum entropy for reduced moment problems. M3AS 10 (2000) 1001–1025.
  10. C. Léonard, Some results about entropic projections, in Stochastic Analysis and Mathematical Analysis, Vol. 50, Progr. Probab., Birkhaüser, Boston, MA (2001) 59–73.
  11. C.D. Levermore, Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83 (1996) 1021–1065. [CrossRef] [MathSciNet]
  12. L. Mieussens, Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamics. Math. Models Methods Appl. Sci. 10 (2000) 1121–1149.
  13. A.J. Povzner, The Boltzmann equation in the kinetic theory of gases. Amer. Math. Soc. Trans. 47 (1965) 193–214.
  14. F. Rogier and J. Schneider, A Direct Method for Solving the Boltzmann Equation. Proc. Colloque Euromech n0287 Discrete Models in Fluid Dynamics, Transport Theory Statist. Phys. 23 (1994) 1–3.
  15. C. Villani, Fisher information bounds for Boltzmann's collision operator. J. Math. Pures Appl. 77 (1998) 821–837.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you