Free Access
Issue 
ESAIM: M2AN
Volume 38, Number 4, JulyAugust 2004



Page(s)  707  722  
DOI  https://doi.org/10.1051/m2an:2004031  
Published online  15 August 2004 
 V.B. Andreev, On difference schemes with a splitting operator for general pdimensional parabolic equations of second order with mixed derivatives . SSSR Comput. Math. Math. Phys. 7 (1967) 312–321.
 G.A. Baker, An implicit, numerical method for solving the twodimensional heat equation. Quart. Appl. Math. 17 (1959/1960) 440–443.
 G.A. Baker and T.A. Oliphant, An implicit, numerical method for solving the twodimensional heat equation . Quart. Appl. Math. 17 (1959/1960) 361–373.
 G. Birkhoff and R.S. Varga, Implicit alternating direction methods . Trans. Amer. Math. Soc. 92 (1959) 13–24. [MathSciNet]
 G. Birkhoff, R.S. Varga and D. Young, Alternating direction implicit methods . Adv. Comput. Academic Press, New York 3 (1962) 189–273.
 P.R. Chernoff, Note on product formulas for operators semigroups . J. Functional Anal. 2 (1968) 238–242. [CrossRef]
 P.R. Chernoff, Semigroup product formulas and addition of unbounded operators . Bull. Amer. Mat. Soc. 76 (1970) 395–398. [CrossRef]
 B.O. Dia and M. Schatzman, Comutateurs semigroupes holomorphes et applications aux directions alternées . RAIRO Modél. Math. Anal. Numér. 30 (1996) 343–383. [MathSciNet]
 E.G. Diakonov, Difference schemes with a splitting operator for nonstationary equations . Dokl. Akad. Nauk SSSR 144 (1962) 29–32. [MathSciNet]
 E.G. Diakonov, Difference schemes with splitting operator for higherdimensional nonstationary problems . SSSR Comput. Math. Math. Phys. 2 (1962) 549–568.
 J. Douglas, On numerical integration of by impilicit methods . SIAM 9 (1955) 42–65.
 J. Douglas and H. Rachford, On the numerical solution of heat condition problems in two and three space variables . Trans. Amer. Math. Soc. 82 (1956) 421–439. [CrossRef] [MathSciNet]
 M. Dryja, Stability in W_{2}^{2} of schemes with splitting operators . SSSR. Comput. Math. Math. Phys. 7 (1967) 296–302.
 G. Fairweather, A.R. Gourlay and A.R. Mitchell, Some high accuracy difference schemes with a splitting operator for equations of parabolic and elliptic type . Numer. Math. 10 (1967) 56–66. [CrossRef] [MathSciNet]
 I.V. Fryazinov, Increased precision order economical schemes for the solution of parabolic type multidimensional equations . SSSR. Comput. Math. Math. Phys. 9 (1969) 1319–1326.
 Z.G. Gegechkori, J.L. Rogava and M.A. Tsiklauri, Highdegree precision decomposition method for an evolution problem . Tbilisi, Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics 14 (1999) 45–48.
 Z.G. Gegechkori, J.L. Rogava and M.A. Tsiklauri, High degree precision decomposition formulas of semigroup approximation . Tbilisi, Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics 16 (2001) 89–92.
 Z.G. Gegechkori, J.L. Rogava and M.A. Tsiklauri, SequentionParallel method of high degree precision for Cauchy abstract problem solution. Minsk, Comput. Methods in Appl. Math. 1 (2001) 173–187.
 Z.G. Gegechkori, J.L. Rogava and M.A. Tsiklauri, High degree precision decomposition method for the evolution problem with an operator under a split form . ESAIM: M2AN 36 (2002) 693–704. [CrossRef] [EDP Sciences]
 D.G. Gordeziani, On application of local onedimensional method for solving parabolic type multidimensional problems of 2mdegree, Proc. of Science Academy of GSSR 3 (1965) 535–542.
 D.G. Gordeziani and A.A. Samarskii, Some problems of plates and shells thermo elasticity and method of summary approximation . Complex analysis and it's applications (1978) 173–186.
 D.G. Gordeziani and H.V. Meladze, On modeling multidimensional quasilinear equation of parabolic type by onedimensional ones, Proc. of Science Academy of GSSR 60 (1970) 537–540.
 D.G. Gordeziani and H.V. Meladze, On modeling of third boundary value problem for the multidimensional parabolic equations of arbitrary area by the onedimensional equations . SSSR Comput. Math. Math. Phys. 14 (1974) 246–250. [CrossRef]
 A.R. Gourlay and A.R. Mitchell, Intermediate boundary corrections for split operator methods in three dimensions . Nordisk Tidskr. InformationsBehandling 7 (1967) 31–38. [MathSciNet]
 N.N. Ianenko, On Economic Implicit Schemes (Fractional steps method) . Dokl. Akad. Nauk SSSR 134 (1960) 84–86.
 N.N. Ianenko, Fractional steps method of solving for multidimensional problems of mathematical physics . Novosibirsk, Nauka (1967).
 N.N. Ianenko and G.V. Demidov, The method of weak approximation as a constructive method for building up a solution of the Cauchy problem . Izdat. “Nauka”, Sibirsk. Otdel., Novosibirsk. Certain Problems Numer. Appl. Math. (1966) 60–83.
 T. Ichinose and S. Takanobu, The norm estimate of the difference between the Kac operator and the Schrodinger emigroup . Nagoya Math. J. 149 (1998) 53–81. [MathSciNet]
 T. Ichinose and H. Tamura, The norm convergence of the TrotterKato product formula with error bound . Commun. Math. Phys. 217 (2001) 489–502. [CrossRef]
 V.P. Ilin, On the splitting of difference parabolic and elliptic equations . Sibirsk. Mat. Zh 6 (1965) 1425–1428.
 K. Iosida, Functional analysis . SpringerVerlag (1965).
 T. Kato, The theory of perturbations of linear operators . Mir (1972).
 A.N. Konovalov, The fractional step method for solving the Cauchy problem for an ndimensional oscillation equation . Dokl. Akad. Nauk SSSR 147 (1962) 25–27. [MathSciNet]
 S.G. Krein, Linear equations in Banach space . Nauka (1971).
 A.M. Kuzyk and V.L. Makarov, Estimation of an exactitude of summarized approximation of a solution of Cauchy abstract problem . Dokl. Akad. Nauk USSR 275 (1984) 297–301.
 G.I. Marchuk, Split methods . Nauka (1988).
 G.I. Marchuk and N.N. Ianenko, The solution of a multidimensional kinetic equation by the splitting method . Dokl. Akad. Nauk SSSR 157 (1964) 1291–1292. [MathSciNet]
 G.I. Marchuk and U.M. Sultangazin, On a proof of the splitting method for the equation of radiation transfer . SSSR. Comput. Math. Math. Phys. 5 (1965) 852–863.
 D. Peaceman and H. Rachford, The numerical solution of parabolic and elliptic differential equations . SIAM 3 (1955) 28–41.
 M. Reed and B. Simon, Methods of modern mathematical physics. II. Fourier analysis, selfadjointness . New YorkLondon, Academic Press [Harcourt Brace Jovanovich, Publishers] (1975).
 J.L. Rogava, On the error estimation of Trotter type formulas in the case of selfAndjoint operator . Functional analysis and its aplication 27 (1993) 84–86.
 J.L. Rogava, Semidiscrete schemes for operator differential equations . Tbilisi, Georgian Technical University press (1995).
 A.A. Samarskii, On an economical difference method for the solution of a multidimensional parabolic equation in an arbitrary region . SSSR Comput. Math. Math. Phys. 2 (1962) 787–811.
 A.A. Samarskii, On the convergence of the method of fractional steps for the heat equation . SSSR Comput. Math. Math. Phys. 2 (1962) 1117–1121.
 A.A. Samarskii, Locally homogeneous difference schemes for higherdimensional equations of hyperbolic type in an arbitrary region. SSSR Comput. Math. Math. Phys. 4 (1962) 638–648.
 A.A. Samarskii, P.N. Vabishchevich, Additive schemes for mathematical physics problems . Nauka (1999).
 Q. Sheng, Solving linear partial differential equation by exponential spliting . IMA J. Numerical Anal. 9 (1989) 199–212. [CrossRef] [MathSciNet]
 R. Temam, Sur la stabilité et la convergence de la méthode des pas fractionnaires . Ann. Mat. Pura Appl. 4 (1968) 191–379.
 H. Trotter, On the product of semigroup of operators . Proc. Amer. Mat. Soc. 10 (1959) 545–551. [CrossRef] [MathSciNet]
Current usage metrics show cumulative count of Article Views (fulltext article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 4896 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.