Free Access
Volume 39, Number 1, January-February 2005
Page(s) 7 - 35
Published online 15 March 2005
  1. Y. Achdou, C. Bernardi and F. Coquel, A priori and a posteriori analysis of finite volume discretizations of Darcy's equations. Numer. Math. 96 (2003) 17–42. [CrossRef] [MathSciNet] [Google Scholar]
  2. M. Amara, D. Capatina-Papaghiuc, E. Chacón-Vera and D. Trujillo, Vorticity–velocity–pressure formulation for Navier–Stokes equations. Comput. Vis. Sci. 6 (2004) 47–52. [CrossRef] [MathSciNet] [Google Scholar]
  3. C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional nonsmooth domains. Math. Meth. Appl. Sci. 21 (1998) 823–864. [CrossRef] [MathSciNet] [Google Scholar]
  4. C. Bègue, C. Conca, F. Murat and O. Pironneau, Les équations de Stokes et de Navier–Stokes avec des conditions aux limites sur la pression. Nonlinear Partial Differ. Equ. Appl., Collège de France Seminar IX (1988) 179–264. [Google Scholar]
  5. C. Bernardi, C. Canuto and Y. Maday, Un problème variationnel abstrait. Application d'une méthode de collocation pour les équations de Stokes. C.R. Acad. Sci. Paris série I 303 (1986) 971–974. [Google Scholar]
  6. C. Bernardi, C. Canuto and Y. Maday, Generalized inf-sup condition for Chebyshev spectral approximation of the Stokes problem. SIAM J. Numer. Anal. 25 (1988) 1237–1271. [CrossRef] [MathSciNet] [Google Scholar]
  7. S. Bertoluzza and V. Perrier, The mortar method in the wavelet context. ESAIM: M2AN 35 (2001) 647–673. [CrossRef] [EDP Sciences] [Google Scholar]
  8. D. Braess and R. Verfürth, A posteriori error estimators for the Raviart–Thomas element. SIAM J. Numer. Anal. 33 (1996) 2431–2444. [CrossRef] [MathSciNet] [Google Scholar]
  9. D.-G. Calugaru, Modélisation et simulation numérique du transport de radon dans un milieu poreux fissuré ou fracturé. Problème direct et problèmes inverses comme outils d'aide à la prédiction sismique, Thesis, Université de Franche-Comté, Besançon (2002). [Google Scholar]
  10. M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numér. 7 (1973) 33–76. [Google Scholar]
  11. M. Discacciati, E. Miglio and A. Quarteroni, Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43 (2002) 57–74. [CrossRef] [MathSciNet] [Google Scholar]
  12. M. Discacciati and A. Quarteroni, Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations, in Proc. of ENUMATH, F. Brezzi Ed., Springer-Verlag (to appear). [Google Scholar]
  13. M. Discacciati and A. Quarteroni, Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations. Comput. Vis. Sci. 6 (2004) 93–104. [MathSciNet] [Google Scholar]
  14. F. Dubois, Vorticity–velocity–pressure formulation for the Stokes problem. Math. Meth. Appl. Sci. 25 (2002) 1091–1119. [CrossRef] [Google Scholar]
  15. F. Dubois, M. Salaün and S. Salmon, First vorticity–velocity–pressure scheme for the Stokes problem, Internal Report 356, Institut Aérotechnique, Conservatoire National des Arts et Métiers, France (2002) (submitted). [Google Scholar]
  16. P.J. Frey and P.-L. George, Maillages, applications aux éléments finis. Hermès, Paris (1999). [Google Scholar]
  17. P.-L. George and F. Hecht, Nonisotropic grids. Handbook of Grid Generation, J.F. Thompson, B.K. Soni & N.P. Weatherhill Eds., CRC Press (1998). [Google Scholar]
  18. V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations, Theory and Algorithms . Springer–Verlag (1986). [Google Scholar]
  19. F. Hecht, Construction d'une base de fonctions P1 non conforme à divergence nulle dans Formula . RAIRO Anal. Numér. 15 (1981) 119–150. [MathSciNet] [Google Scholar]
  20. F. Hecht and O. Pironneau, FreeFem++, see [Google Scholar]
  21. H. Kawarada, E. Baba and H. Suito, Effects of spilled oil on coastal ecosystems, in the Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering 2000, CD-ROM proceedings (2001). [Google Scholar]
  22. H. Kawarada, E. Baba and H. Suito, Effects of wave breaking action on flows in tidal-flats, in Computational Fluid Dynamics for the 21st Century, M. Hafez, K. Morinishi and J. Périaux Eds., Springer. Notes on Numerical Fluid Mechanics 78 (2001) 275–289. [Google Scholar]
  23. W.J. Layton, F. Schieweck and I. Yotov, Coupling fluid flow with porous media flow, Preprint of the University of Magdebourg, report N° 22-01 (2001). [Google Scholar]
  24. J.-C. Nedelec, Mixed finite elements in Formula . Numer. Math. 35 (1980) 315–341. [CrossRef] [MathSciNet] [Google Scholar]
  25. R.A. Nicolaides, Existence, uniqueness and approximation for generalized saddle point problems. SIAM J. Numer. Anal. 19 (1982) 349–357. [CrossRef] [MathSciNet] [Google Scholar]
  26. P.-A. Raviart and J.-M. Thomas, A mixed finite element method for second order elliptic problems, Mathematical Aspects of Finite Element Methods. Springer, Berlin. Lect. Notes Math. 606 (1977) 292–315. [CrossRef] [Google Scholar]
  27. S. Salmon, Développement numérique de la formulation tourbillon–vitesse–pression pour le problème de Stokes. Thesis, Université Pierre et Marie Curie, Paris (1999). [Google Scholar]
  28. R. Temam, Theory and Numerical Analysis of the Navier–Stokes Equations . North-Holland (1977). [Google Scholar]
  29. R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques . Wiley & Teubner (1996). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you