Free Access
Issue
ESAIM: M2AN
Volume 39, Number 4, July-August 2005
Page(s) 797 - 826
DOI https://doi.org/10.1051/m2an:2005035
Published online 15 August 2005
  1. G. Alberti and C. Mantegazza, A note on the theory of SBV functions. Bollettino U.M.I. Sez. B 7 (1997) 375–382. [Google Scholar]
  2. L. Ambrosio, L. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York (2000). [Google Scholar]
  3. X. Blanc, C. Le Bris and F. Legoll, work in preparation, and Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics, Preprint, Laboratoire Jacques-Louis Lions, Université Paris 6 (2004), available at http://www.ann.jussieu.fr/publications/2004/R04029.html [Google Scholar]
  4. X. Blanc, C. Le Bris and P.-L. Lions, From molecular models to continuum mechanics. Arch. Rational Mech. Anal. 164 (2002) 341–381. [CrossRef] [MathSciNet] [Google Scholar]
  5. A. Braides, G. Dal Maso and A. Garroni, Variational formulation of softening phenomena in fracture mechanics: the one-dimensional case. Arch. Rational Mech. Anal. 146 (1999) 23–58. [CrossRef] [MathSciNet] [Google Scholar]
  6. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer (1991). [Google Scholar]
  7. J.Q. Broughton, F.F. Abraham, N. Bernstein and E. Kaxiras, Concurrent coupling of length scales: Methodology and application. Phys. Rev. B 60 (1999) 2391–2403. [CrossRef] [Google Scholar]
  8. P.G. Ciarlet, An O(h²) method for a non-smooth boundary value problem. Aequationes Math. 2 (1968) 39–49. [CrossRef] [MathSciNet] [Google Scholar]
  9. P.G. Ciarlet, Mathematical Elasticity, Vol. I: Three-Dimensional Elasticity. Studies in Mathematics and its Applications, North Holland (1988). [Google Scholar]
  10. P.G. Ciarlet, Basic Error Estimates for Elliptic Problems, in Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet, J.-L. Lions, Eds., North-Holland (1991) 17–351. [Google Scholar]
  11. W. E and P. Ming, private communication. [Google Scholar]
  12. J. Knap and M. Ortiz, An analysis of the Quasicontinuum method. J. Mech. Phys. Solids 49 (2001) 1899–1923. [CrossRef] [Google Scholar]
  13. P. Le Tallec, Numerical Methods for nonlinear three-dimensional elasticity, in Handbook of Numerical Analysis, Vol. III, P.G. Ciarlet, J.-L. Lions, Eds., North-Holland (1994) 465–622. [Google Scholar]
  14. F. Legoll, Méthodes moléculaires et multi-échelles pour la simulation numérique des matériaux (Molecular and multiscale methods for the numerical simulation of materials), Ph.D. Thesis, Université Pierre et Marie Curie (France), 2004, available at http://cermics.enpc.fr/~legoll/these_Legoll.pdf [Google Scholar]
  15. J.E. Marsden and T.J.R. Hugues, Mathematical foundations of Elasticity. Dover (1994). [Google Scholar]
  16. R. Miller, E.B. Tadmor, R. Phillips and M. Ortiz, Quasicontinuum simulation of fracture at the atomic scale. Model. Simul. Mater. Sci. Eng. 6 (1998) 607–638. [CrossRef] [Google Scholar]
  17. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer (1997). [Google Scholar]
  18. E.B. Tadmor, M. Ortiz and R. Phillips, Quasicontinuum analysis of defects in solids. Philos. Mag. A 73 (1996) 1529–1563. [CrossRef] [Google Scholar]
  19. E.B. Tadmor and R. Phillips, Mixed atomistic and continuum models of deformation in solids. Langmuir 12 (1996) 4529–4534. [CrossRef] [Google Scholar]
  20. E.B. Tadmor, G.S. Smith, N. Bernstein and E. Kaxiras, Mixed finite element and atomistic formulation for complex crystals. Phys. Rev. B 59 (1999) 235–245. [CrossRef] [Google Scholar]
  21. V.B. Shenoy, R. Miller, E.B. Tadmor, R. Phillips and M. Ortiz, Quasicontinuum models of interfacial structure and deformation. Phys. Rev. Lett. 80 (1998) 742–745. [CrossRef] [Google Scholar]
  22. V.B. Shenoy, R. Miller, E.B. Tadmor, D. Rodney, R. Phillips and M. Ortiz, An adaptative finite element approach to atomic-scale mechanics – the Quasicontinuum method, J. Mech. Phys. Solids 47 (1999) 611–642. [Google Scholar]
  23. C. Truesdell and W. Noll, The nonlinear field theories of mechanics theory of elasticity. Handbuch der Physik, III/3, Springer Berlin (1965) 1–602. [Google Scholar]
  24. L. Truskinovsky, Fracture as a phase transformation, in Contemporary research in mechanics and mathematics of materials, Ericksen's Symposium, R. Batra and M. Beatty, Eds., CIMNE, Barcelona (1996) 322–332. [Google Scholar]
  25. K.J. Van Vliet, J. Li, T. Zhu, S. Yip and S. Suresh, Quantifying the early stages of plasticity through nanoscale experiments and simulations. Phys. Rev. B 67 (2003) 104105. [CrossRef] [Google Scholar]
  26. P. Zhang, P.A. Klein, Y. Huang, H. Gao and P.D. Wu, Numerical simulation of cohesive fracture by the virtual-internal-bond model. Comput. Model. Engrg. Sci. 3 (2002) 263–289. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you