Free Access
Issue
ESAIM: M2AN
Volume 39, Number 4, July-August 2005
Page(s) 781 - 796
DOI https://doi.org/10.1051/m2an:2005034
Published online 15 August 2005
  1. F. Alouges and M. Pierre, Mesh optimization for singular axisymmetric harmonic maps from the disc into the sphere. Numer. Math. To appear. [Google Scholar]
  2. F. Bethuel, J.-M. Coron, J.-M. Ghidaglia and A. Soyeur, Heat flows and relaxed energies for harmonic maps, in Nonlinear diffusion equations and their equilibrium states, 3 (Gregynog, 1989), Birkhäuser Boston, Boston, MA. Progr. Nonlinear Differential Equations Appl. 7 (1992) 99–109. [Google Scholar]
  3. M. Bertsch, R. Dal Passo and R. van der Hout, Nonuniqueness for the heat flow of harmonic maps on the disk. Arch. Rational Mech. Anal. 161 (2002) 93–112. [CrossRef] [Google Scholar]
  4. H. Brezis and J.-M. Coron, Large solutions for harmonic maps in two dimensions. Comm. Math. Phys. 92 (1983) 203–215. [CrossRef] [MathSciNet] [Google Scholar]
  5. N. Carlson and K. Miller, Design and application of a gradient-weighted moving finite element code. I. In one dimension. SIAM J. Sci. Comput. 19 (1998) 728–765. [CrossRef] [MathSciNet] [Google Scholar]
  6. K.-C. Chang, Heat flow and boundary value problem for harmonic maps. Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989) 363–395. [MathSciNet] [Google Scholar]
  7. J. Eells and J. Sampson, Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86 (1964) 109–160. [CrossRef] [MathSciNet] [Google Scholar]
  8. A. Freire, Uniqueness for the harmonic map flow from surfaces to general targets. Comment. Math. Helv. 70 (1995) 310–338. [CrossRef] [MathSciNet] [Google Scholar]
  9. A. Freire, Uniqueness for the harmonic map flow in two dimensions. Calc. Var. Partial Differential Equations 3 (1995) 95–105. [CrossRef] [MathSciNet] [Google Scholar]
  10. F. Hülsemann and Y. Tourigny, A new moving mesh algorithm for the finite element solution of variational problems. SIAM J. Numer. Anal. 35 (1998) 1416–1438. [CrossRef] [MathSciNet] [Google Scholar]
  11. M. Pierre, Weak BV convergence of moving finite elements for singular axisymmetric harmonic maps. SIAM J. Numer. Anal. To appear. [Google Scholar]
  12. E. Polak, Algorithms and consistent approximations, Optimization, Applied Mathematical Sciences 124 (1997), Springer-Verlag, New York. [Google Scholar]
  13. J. Qing, On singularities of the heat flow for harmonic maps from surfaces into spheres. Comm. Anal. Geom. 3 (1995) 297–315. [MathSciNet] [Google Scholar]
  14. S. Rippa and B. Schiff, Minimum energy triangulations for elliptic problems. Comput. Methods Appl. Mech. Engrg. 84 (1990) 257–274. [CrossRef] [MathSciNet] [Google Scholar]
  15. M. Struwe, The evolution of harmonic maps, in Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990). Math. Soc. Japan (1991) 1197–1203. [Google Scholar]
  16. P. Topping, Reverse bubbling and nonuniqueness in the harmonic map flow. Internat. Math. Res. Notices 10 (2002) 505–520. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you