Free Access
Issue
ESAIM: M2AN
Volume 39, Number 5, September-October 2005
Page(s) 931 - 963
DOI https://doi.org/10.1051/m2an:2005041
Published online 15 September 2005
  1. M.R. Archambault, C.F. Edwards and R.W. MacCormack, Computation of spray dynamics by moment transport equations I: Theory and development. Atomization Spray 13 (2003) 63–87. [CrossRef] [Google Scholar]
  2. M.R. Archambault, C.F. Edwards and R.W. MacCormack, Computation of spray dynamics by moment transport equations II: Application to calculation of a quasi-one-dimensional spray. Atomization Spray 13 (2003) 89–115. [CrossRef] [Google Scholar]
  3. J.C. Beck and A.P. Watkins, On the development of spray submodels based on droplet size moments. J. Comput. Phys. 182 (2002) 1–36. [CrossRef] [Google Scholar]
  4. J.C. Beck and A.P. Watkins, The droplet number moments approach to spray modeling: The development of heat and mass transfer sub-models. Int. J. Heat Fluid Flow 24 (2003) 242–259. [CrossRef] [Google Scholar]
  5. A.V. Bobylev and T. Ohwada, The error of the splitting scheme for solving evolutionary equations. Appl. Math. Lett. 14 (2001) 45–48. [CrossRef] [MathSciNet] [Google Scholar]
  6. F. Bouchut, On zero pressure gas dynamics. Advances in Kinetic Theory and Computing, Selected Papers, Ser. Adv. Math. Appl. Sci. 22 (1994) 171–190. [Google Scholar]
  7. F. Bouchut, S. Jin and X. Li, Numerical approximations of pressureless and isothermal gas dynamics. SIAM J. Numer. Anal. 41-1 (2003) 135–158. [Google Scholar]
  8. R. Clift, J.R. Grace and M.E. Weber, Bubbles, drops and particles. Academic Press (1978). [Google Scholar]
  9. C.T. Crowe, Review - Numerical methods for dilute gas-particle flows. Trans. ASME J. Fluids Eng. 104 (1982) 297–303. [CrossRef] [Google Scholar]
  10. C. Dafermos, Generalized characteristics in hyperbolic systems of conservation laws. Arch. Rational Mech. Anal. 107 (1989) 127–155. [Google Scholar]
  11. K. Domelevo, Analyse mathématique et numérique d'une modélisation cinétique d'un brouillard de gouttelettes dans un écoulement gazeux turbulent. Ph.D. Thesis, École Polytechnique, France (1996). [Google Scholar]
  12. K. Domelevo, The kinetic sectional approach for noncolliding evaporating sprays. Atomization Spray 11 (2001) 291–303. [Google Scholar]
  13. D.A. Drew, Mathematical modeling of two-phase flows. Annu. Rev. Fluid. Mech. 15 (1983) 261–291. [Google Scholar]
  14. G. Dufour, Un modèle multi-fluide Eulerien pour les écoulements diphasiques à inclusions dispersées. Ph.D. Thesis, Université Toulouse III, France (2005). [Google Scholar]
  15. J.K. Dukowicz, A particle-fluid numerical model for liquid sprays. J. Comput. Phys. 35 (1980) 229–253. [CrossRef] [MathSciNet] [Google Scholar]
  16. J. Dupays, Contribution à l'étude du rôle de la phase condensée dans la stabilité d'un propulseur à propergol solide pour lanceur spatial. Ph.D. Thesis, Institut National Polytechnique de Toulouse, France (1996). [Google Scholar]
  17. H. Grad, On the kinetic theory of rarefied gases. Comm. Pure Appl. Math. 2 (1949) 331–407. [Google Scholar]
  18. J.B. Greenberg, I. Silverman and Y. Tambour, On the origin of spray sectional conservation equations. Combustion Flame 93 (1993) 90–96. [Google Scholar]
  19. A. Harten, B. Engquist, S. Osher and S. Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes III. J. Comput. Phys. 126 (1987) 231–303. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  20. J.J. Hylkema, Modélisation cinétique et simulation numérique d'un brouillard dense de gouttelettes. Applications aux propulseurs à poudre. Ph.D. Thesis, ENSAE, France (1999). [Google Scholar]
  21. M. Ishii, Thermo-fluid dynamics of two-phase flows. Eyrolles, Paris (1975). [Google Scholar]
  22. F. Laurent, Analyse numérique d'une méthode multi-fluide Eulérienne pour la description de sprays qui s'évaporent. C. R. Acad. Sci. Paris Ser. I 334 (2002) 417–422. [Google Scholar]
  23. F. Laurent, Numerical analysis of Eulerian multi-fluid models in the context of kinetic formulations for dilute evaporating sprays. To be submitted. [Google Scholar]
  24. F. Laurent and M. Massot, Multi-fluid modeling of laminar poly-disperse spray flames: origin, assumptions and comparison of sectional and sampling methods. Combust. Theor. Model. 5 (2001) 537–572. [Google Scholar]
  25. F. Laurent, M. Massot and P. Villedieu, Eulerian multi-fluid modeling for the numerical simulation of coalescence in polydisperse dense liquid sprays. J. Comput. Phys. 194 (2004) 505–543. [CrossRef] [MathSciNet] [Google Scholar]
  26. F. Laurent, V. Santoro, M. Noskov, M.D. Smooke, A. Gomez and M. Massot, Accurate treatment of size distribution effects in polydisperse spray diffusion flames: multi-fluid modelling, computations and experiments. Combust. Theor. Model. 8 (2004) 385–412. [CrossRef] [Google Scholar]
  27. C.D. Levermore, Moment closure hierarchies for kinetics theories. J. Statist. Phys. 83 (1996) 1021–1065. [CrossRef] [MathSciNet] [Google Scholar]
  28. D. Levy, G. Puppo and G. Russo, On the behavior of the total variation in CWENO methods for conservation laws. Appl. Numer. Math. 33 (2000) 407–414. [CrossRef] [MathSciNet] [Google Scholar]
  29. R. Maxey and J. Riley, Equation of motion of a small rigid sphere in a non-unifom flow. Phys. Fluids 26 (1983) 883–889. [NASA ADS] [CrossRef] [Google Scholar]
  30. P.J. O'Rourke, Collective drop effects on vaporizing liquid sprays. Ph.D. Thesis, Los Alamos national Laboratory, New Mexico 87545 (1981). [Google Scholar]
  31. F. Poupaud and M. Rascle, Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients. Comm. P.D.E 22 (1997) 337–358. [Google Scholar]
  32. D. Ramkrishna and A.G. Fredrickson, Population balances: Theory and applications to particulate systems in engineering. Academic Press (2000). [Google Scholar]
  33. M. Rüger, S. Hohmann, M. Sommerfeld and G. Kohnen, Euler-Lagrange calculations of turbulent sprays: the effect of droplet collisions and coalescence. Atomization Spray 10 (2000). [Google Scholar]
  34. O. Simonin, Modélisation numérique des écoulements turbulents diphasiques à inclusions dispersées. École de Printemps de Mécanique des Fluides numériques, Aussois (1991). [Google Scholar]
  35. O. Simonin, Continuum modeling of dispersed two-phase flows. Combustion and turbulence in two-phase flows. Lecture Series 1996-02, Von Karman Inst. for fluid dyn. (1996). [Google Scholar]
  36. G. Strang, On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5 (1968) 507–517. [Google Scholar]
  37. Y. Tambour, A Lagrangian sectional approach for simulating droplet size distribution of vaporizing fuel sprays in a turbulent jet. Combustion Flame 60 (1985) 15–28. [CrossRef] [Google Scholar]
  38. B. Van Leer, A second-order sequel to Godunov's method. J. Comput. Phys. 32 (1979) 101–136. [Google Scholar]
  39. F.A. Williams, Spray combustion and atomization. Phys. Fluids 1 (1958) 541–555. [Google Scholar]
  40. F.A. Williams, Combustion Theory. Addison-Wesley Publishing (1985). [Google Scholar]
  41. D.L. Wright, R. McGraw and D.E. Rosner, Bivariate extension of the quadrature method of moments for modeling simultaneous coagulation and sintering of particle populations. J. Colloid Interf. Sci. 236 (2001) 242–251. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you