Free Access
Issue
ESAIM: M2AN
Volume 39, Number 5, September-October 2005
Page(s) 965 - 993
DOI https://doi.org/10.1051/m2an:2005042
Published online 15 September 2005
  1. M. Breuß, The correct use of the Lax-Friedrichs method. ESAIM: M2AN 38 (2004) 519–540. [CrossRef] [EDP Sciences] [Google Scholar]
  2. L. Evans, Partial Differential Equations. American Mathematical Society (1998). [Google Scholar]
  3. E. Godlewski and P.-A. Raviart, Hyperbolic systems of conservation laws. Edition Marketing (1991). [Google Scholar]
  4. E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer Verlag, New York (1996). [Google Scholar]
  5. A. Harten, On a class of high order resolution total variation stable finite difference schemes. SIAM J. Numer. Anal. 21 (1984) 1–23. [CrossRef] [MathSciNet] [Google Scholar]
  6. G.-S. Jiang and E. Tadmor, Non-oscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM J. Sci. Comput. 19 (1998) 1892–1917. [CrossRef] [MathSciNet] [Google Scholar]
  7. G.-S. Jiang, D. Levy, C.T. Lin, S. Osher and E. Tadmor, High-resolution nonoscillatory central schemes with nonstaggered grids for hyperbolic conservation laws. SIAM J. Numer. Anal. 35 (1998) 2147–2168. [CrossRef] [MathSciNet] [Google Scholar]
  8. S. Jin and Z. Xin, The relaxation scheme for systems of conservation laws in arbitrary space dimension. Comm. Pure Appl. Math. 45 (1995) 235–276. [CrossRef] [MathSciNet] [Google Scholar]
  9. P.D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical approximation. Comm. Pure Appl. Math. 7 (1954) 159–193. [CrossRef] [MathSciNet] [Google Scholar]
  10. P.G. Lefloch and J.-G. Liu, Generalized monotone schemes, discrete paths of extrema, and discrete entropy conditions. Math. Comp. 68 (1999) 1025–1055. [CrossRef] [MathSciNet] [Google Scholar]
  11. R.J. Leveque, Numerical Methods for Conservation Laws. Birkhäuser Verlag, 2nd Edition (1992). [Google Scholar]
  12. R.J. Leveque, Finite Volume Methods for Hyperbolic Problems. Cambridge University Press (2002). [Google Scholar]
  13. D. Levy, G. Puppo and G. Russo, Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22 (2000) 656–672. [CrossRef] [MathSciNet] [Google Scholar]
  14. X.D. Liu and E. Tadmor, Third order nonoscillatory central schemes for hyperbolic conservation laws. Numer. Math. 79 (1998) 397–425. [CrossRef] [MathSciNet] [Google Scholar]
  15. H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87 (1990) 408–436. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  16. E. Tadmor, Numerical viscosity and the entropy condition for conservative difference schemes. Math. Comp. 68 (1984) 1025–1055. [Google Scholar]
  17. H. Tang and G. Warnecke, A note on (2k + 1)-point conservative monotone schemes. ESAIM: M2AN 38 (2004) 345–358. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you