Free Access
Issue
ESAIM: M2AN
Volume 39, Number 5, September-October 2005
Page(s) 995 - 1017
DOI https://doi.org/10.1051/m2an:2005043
Published online 15 September 2005
  1. J. Alberty, C. Carstensen and S.A. Funken, Remarks around 50 lines of Matlab: finite element implementation. Numer. Algorithms 20 (1999) 117–137. [Google Scholar]
  2. W.F. Brown, Micromagnetics. Interscience, New York (1963). [Google Scholar]
  3. C. Carstensen and S. Funken, Adaptive coupling of penalised finite element methods and boundary element methods for relaxed micromagnetics. In preparation. [Google Scholar]
  4. C. Carstensen and D. Praetorius, Numerical analysis for a macroscopic model in micromagnetics. SIAM J. Numer. Anal. 42 (2005) 2633–2651, electronic. [CrossRef] [MathSciNet] [Google Scholar]
  5. C. Carstensen and A. Prohl, Numerical analysis of relaxed micromagnetics by penalized finite elements. Numer. Math. 90 (2001) 65–99. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. De Simone, Energy minimizers for large ferromagnetic bodies. Arch. Rational Mech. Anal. 125 (1993) 99–143. [CrossRef] [MathSciNet] [Google Scholar]
  7. S.A. Funken and A. Prohl, On stabilized finite element methods in relaxed micromagnetism. Preprint 99-18, University of Kiel (1999). [Google Scholar]
  8. A. Hubert and R. Schäfer, Magnetic Domains. Springer (1998). [Google Scholar]
  9. P. Keast, Moderate-degree tetrahedral quadrature formulas. Comput. Methods Appl. Mech. Engrg. 55 (1986) 339–348. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Kružík, Maximum principle based algorithm for hysteresis in micromagnetics. Adv. Math. Sci. Appl. 13 (2003) 461–485. [MathSciNet] [Google Scholar]
  11. M. Kružík and A. Prohl, Young measure approximation in micromagnetics. Numer. Math. 90 (2001) 291–307. [CrossRef] [MathSciNet] [Google Scholar]
  12. M. Kružík and A. Prohl, Macroscopic modeling of magnetic hysteresis. Adv. Math. Sci. Appl. 14 (2004) 665–681. [MathSciNet] [Google Scholar]
  13. M. Kružík and A. Prohl, Recent developments in modeling, analysis and numerics of ferromagnetism. SIAM Rev. (accepted, 2005). [Google Scholar]
  14. M. Kružík and T. Roubíček, Microstructure evolution model in micromagnetics. Z. Angew. Math. Phys. 55 (2004) 159–182. [Google Scholar]
  15. M. Kružík and T. Roubíček, Interactions between demagnetizing field and minor-loop development in bulk ferromagnets. J. Magn. Magn. Mater. 277 (2004) 192–200. [CrossRef] [Google Scholar]
  16. P. Pedregal, Parametrized Measures and Variational Principles. Birkhäuser (1997). [Google Scholar]
  17. A. Prohl, Computational micromagnetism. Teubner (2001). [Google Scholar]
  18. R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner (1996). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you