Free Access
Volume 40, Number 2, March-April 2006
Page(s) 413 - 430
Published online 21 June 2006
  1. P. Anselone, Collectively compact operator approximation theory. Prentice Hall (1971). [Google Scholar]
  2. T. Apel and S. Nicaise, The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges. Math. Method. Appl. Sci. 21 (1998) 519–549. [Google Scholar]
  3. P. Arbenz and R. Geus, Eigenvalue solvers for electromagnetic fields in cavities, in High performance scientific and engineering computing, H.-J. Bungartz, F. Durst, and C. Zenger, Eds., Lect. Notes Comput. Sc., Springer, Berlin 8(1999). [Google Scholar]
  4. D.G. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2001) 1749–1779. [Google Scholar]
  5. F. Assous, P. Ciarlet and E. Sonnendrücker, Characterization of the singular part of the solution of Maxwell's equations in a polyhedral domain. RAIRO Modél. Math. Anal. Numér. 32 (1998) 485–499. [Google Scholar]
  6. M. Birman and M. Solomyak, L2-theory of the Maxwell operator in arbitrary domains. Russ. Math. Surv. 42 (1987) 75–96. [Google Scholar]
  7. D. Boffi, Fortin operator and discrete compactness for edge elements. Numer. Math. 87 (2000) 229–246. [CrossRef] [MathSciNet] [Google Scholar]
  8. D. Boffi, L. Demkowicz and M. Costabel, Discrete compactness for p and hp 2d edge finite elements. Math. Mod. Meth. Appl. S. 13 (2003) 1673–1687. [CrossRef] [MathSciNet] [Google Scholar]
  9. D. Boffi, M. Costabel, M. Dauge and L. Demkowicz, Discrete compactness for the hp version of rectangular edge finite elements. ICES Report 04-29, University of Texas, Austin (2004). [Google Scholar]
  10. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer, New York (1991). [Google Scholar]
  11. F. Chatelin, Spectral approximation of linear operators. Academic Press, New York (1983). [Google Scholar]
  12. P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978). [Google Scholar]
  13. M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains. Arch. Rational Mech. Anal. 151 (2000) 221–276. [CrossRef] [MathSciNet] [Google Scholar]
  14. M. Dauge, Benchmark computations for Maxwell equations for the approximation of highly singular solutions. Technical report, University of Rennes 1. [Google Scholar]
  15. L. Demkowicz, P. Monk, C. Schwab and L. Vardepetyan, Maxwell eigenvalues and discrete compactness in two dimensions. Comput. Math. Appl. 40 (2000) 589–605. [CrossRef] [MathSciNet] [Google Scholar]
  16. C. Hazard and M. Lenoir, On the solution of time-harmonic scattering problems for Maxwell's equations. SIAM J. Math. Anal. 27 (1996) 1597–1630. [CrossRef] [MathSciNet] [Google Scholar]
  17. J. Hesthaven and T. Warburton, High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem. Philos. T. Roy. Soc. A 362 (2004) 493–524. [Google Scholar]
  18. R. Hiptmair, Finite elements in computational electromagnetism. Acta Numer. 11 (2002) 237–339. [CrossRef] [MathSciNet] [Google Scholar]
  19. P. Houston, I. Perugia, D. Schneebeli and D. Schötzau, Interior penalty method for the indefinite time-harmonic Maxwell equations. Numer. Math. 100 (2005) 485–518. [CrossRef] [MathSciNet] [Google Scholar]
  20. P. Houston, I. Perugia and D. Schötzau, Mixed discontinuous Galerkin approximation of the Maxwell operator: Non-stabilized formulation. J. Sci. Comput. 22 (2005) 315–346. [CrossRef] [MathSciNet] [Google Scholar]
  21. F. Kikuchi, On a discrete compactness property for the Nédélec finite elements. J. Fac. Sci. U. Tokyo IA 36 (1989) 479–490. [Google Scholar]
  22. M. Krizek and P. Neittaanmaki, On the validity of Friedrichs' inequalities. Math. Scand. 54 (1984) 17–26. [MathSciNet] [Google Scholar]
  23. R. Leis, Initial boundary value problems in Mathematical Physics. John Wiley, New York (1988). [Google Scholar]
  24. S. Lohrengel and S. Nicaise, A discontinuous Galerkin method on refined meshes for the 2d time-harmonic Maxwell equations in composite materials. Preprint Macs, University of Valenciennes, 2004. J. Comput. Appl. Math. (to appear). [Google Scholar]
  25. P. Monk, Finite element methods for Maxwell's equations. Numer. Math. Scientific Comp., Oxford Univ. Press, New York (2003). [Google Scholar]
  26. P. Monk and L. Demkowicz, Discrete compactness and the approximation of Maxwell's equations in Formula . Math. Comp. 70 (2000) 507–523. [Google Scholar]
  27. J. Osborn, Spectral approximation for compact operators. Math. Comp. 29 (1975) 712–725. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you