Free Access
Volume 40, Number 2, March-April 2006
Page(s) 295 - 310
Published online 21 June 2006
  1. K.T. Andrews, M. Shillor and S. Wright, On the dynamic vibrations of an elastic beam in frictional contact with a rigid obstacle. J. Elasticity 42 (1996) 1–30. [CrossRef] [MathSciNet]
  2. K.T. Andrews, L. Chapman, J.R. Fernández, M. Fisackerly, M. Shillor, L. Vanerian and T. VanHouten, A membrane in adhesive contact. SIAM J. Appl. Math. 64 (2003) 152–169. [CrossRef] [MathSciNet]
  3. K.T. Andrews, J.R. Fernández and M. Shillor, A thermoviscoelastic beam with a tip body. Comput. Mech. 33 (2004) 225–234. [CrossRef] [MathSciNet]
  4. K.T. Andrews, J.R. Fernández and M. Shillor, Numerical analysis of dynamic thermoviscoelastic contact with damage of a rod. IMA J. Appl. Math. 70 (2005) 768–795. [CrossRef] [MathSciNet]
  5. A. Bermúdez and C. Moreno, Duality methods for solving variational inequalities. Comput. Math. Appl. 7 (1981) 43–58. [CrossRef] [MathSciNet]
  6. M. Campo, J.R. Fernández and J.M. Viaño, Numerical analysis and simulations of a quasistatic frictional contact problem with damage. J. Comput. Appl. Math. 192 (2006) 30–39. [CrossRef] [MathSciNet]
  7. O. Chau, J.R. Fernández, W. Han and M. Sofonea, A frictionless contact problem for elastic-viscoplastic materials with normal compliance and damage. Comput. Methods Appl. Mech. Eng. 191 (2002) 5007–5026. [CrossRef]
  8. X. Cheng and W. Han, Inexact Uzawa algorithms for variational inequalities of the second kind. Comput. Methods Appl. Mech. Eng. 192 (2003) 1451–1462. [CrossRef]
  9. P.G. Ciarlet, The finite element method for elliptic problems, in Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions Eds., Vol. II (1991) 17–352.
  10. G. Duvaut and J.L. Lions, Inequalities in mechanics and physics. Springer-Verlag, Berlin (1976).
  11. J.R. Fernández, M. Shillor and M. Sofonea, Numerical analysis and simulations of quasistatic frictional wear of a beam (submitted).
  12. A.C. Galucio, J.-F. Deü and R. Ohayon, Finite element formulation of viscoelastic sandwich beams using fractional derivative operators. Comput. Mech. 33 (2004) 282–291. [CrossRef]
  13. R. Glowinski, Numerical methods for nonlinear variational problems. Springer, New York (1984).
  14. W. Han and M. Sofonea, Quasistatic contact problems in viscoelasticity and viscoplasticity. American Mathematical Society-Intl. Press (2002).
  15. W. Han, K.L. Kuttler, M. Shillor and M. Sofonea, Elastic beam in adhesive contact. Int. J. Solids Struct. 39 (2002) 1145–1164. [CrossRef]
  16. A. Klarbring, A. Mikelić and M. Shillor, Frictional contact problems with normal compliance. Int. J. Eng. Sci. 26 (1988) 811–832. [CrossRef] [MathSciNet]
  17. K.L. Kuttler, A. Park, M. Shillor and W. Zhang, Unilateral dynamic contact of two beams. Math. Comput. Model. 34 (2001) 365–384. [CrossRef]
  18. T.A. Laursen, Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Springer, Berlin (2002).
  19. P.D. Panagiotopoulos, Inequality problems in mechanics and applications. Convex and nonconvex energy functions. Birkhäuser Boston, Boston (1985).
  20. I. Romero, The interpolation of rotations and its application to finite element models of geometrically exact rods. Comput. Mech. 34 (2004) 121–133. [MathSciNet]
  21. I. Romero and F. Armero, An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy-momentum conserving scheme in dynamics. Int. J. Numer. Meth. Eng. 54 (2002) 1683–1716. [CrossRef]
  22. M. Sofonea, M. Shillor and R. Touzani, Quasistatic frictional contact and wear of a beam. Dyn. Contin. Discrete I. 8 (2000) 201–218.
  23. G.E. Stavroulakis and H. Antes, Nonlinear boundary equation approach for inequality 2-D elastodynamics. Eng. Anal. Bound. Elem. 23 (1999) 487–501. [CrossRef]
  24. P. Wriggers, Computational contact mechanics. John Wiley and Sons Ltd (2002).
  25. H.W. Zhang, S.Y. He, X.S. Li and P. Wriggers, A new algorithm for numerical solution of 3D elastoplastic contact problems with orthotropic friction law. Comput. Mech. 34 (2004) 1–14.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you