Free Access
Volume 40, Number 2, March-April 2006
Page(s) 295 - 310
Published online 21 June 2006
  1. K.T. Andrews, M. Shillor and S. Wright, On the dynamic vibrations of an elastic beam in frictional contact with a rigid obstacle. J. Elasticity 42 (1996) 1–30. [CrossRef] [MathSciNet] [Google Scholar]
  2. K.T. Andrews, L. Chapman, J.R. Fernández, M. Fisackerly, M. Shillor, L. Vanerian and T. VanHouten, A membrane in adhesive contact. SIAM J. Appl. Math. 64 (2003) 152–169. [CrossRef] [MathSciNet] [Google Scholar]
  3. K.T. Andrews, J.R. Fernández and M. Shillor, A thermoviscoelastic beam with a tip body. Comput. Mech. 33 (2004) 225–234. [CrossRef] [MathSciNet] [Google Scholar]
  4. K.T. Andrews, J.R. Fernández and M. Shillor, Numerical analysis of dynamic thermoviscoelastic contact with damage of a rod. IMA J. Appl. Math. 70 (2005) 768–795. [CrossRef] [MathSciNet] [Google Scholar]
  5. A. Bermúdez and C. Moreno, Duality methods for solving variational inequalities. Comput. Math. Appl. 7 (1981) 43–58. [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Campo, J.R. Fernández and J.M. Viaño, Numerical analysis and simulations of a quasistatic frictional contact problem with damage. J. Comput. Appl. Math. 192 (2006) 30–39. [CrossRef] [MathSciNet] [Google Scholar]
  7. O. Chau, J.R. Fernández, W. Han and M. Sofonea, A frictionless contact problem for elastic-viscoplastic materials with normal compliance and damage. Comput. Methods Appl. Mech. Eng. 191 (2002) 5007–5026. [CrossRef] [Google Scholar]
  8. X. Cheng and W. Han, Inexact Uzawa algorithms for variational inequalities of the second kind. Comput. Methods Appl. Mech. Eng. 192 (2003) 1451–1462. [CrossRef] [Google Scholar]
  9. P.G. Ciarlet, The finite element method for elliptic problems, in Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions Eds., Vol. II (1991) 17–352. [Google Scholar]
  10. G. Duvaut and J.L. Lions, Inequalities in mechanics and physics. Springer-Verlag, Berlin (1976). [Google Scholar]
  11. J.R. Fernández, M. Shillor and M. Sofonea, Numerical analysis and simulations of quasistatic frictional wear of a beam (submitted). [Google Scholar]
  12. A.C. Galucio, J.-F. Deü and R. Ohayon, Finite element formulation of viscoelastic sandwich beams using fractional derivative operators. Comput. Mech. 33 (2004) 282–291. [CrossRef] [Google Scholar]
  13. R. Glowinski, Numerical methods for nonlinear variational problems. Springer, New York (1984). [Google Scholar]
  14. W. Han and M. Sofonea, Quasistatic contact problems in viscoelasticity and viscoplasticity. American Mathematical Society-Intl. Press (2002). [Google Scholar]
  15. W. Han, K.L. Kuttler, M. Shillor and M. Sofonea, Elastic beam in adhesive contact. Int. J. Solids Struct. 39 (2002) 1145–1164. [CrossRef] [Google Scholar]
  16. A. Klarbring, A. Mikelić and M. Shillor, Frictional contact problems with normal compliance. Int. J. Eng. Sci. 26 (1988) 811–832. [CrossRef] [MathSciNet] [Google Scholar]
  17. K.L. Kuttler, A. Park, M. Shillor and W. Zhang, Unilateral dynamic contact of two beams. Math. Comput. Model. 34 (2001) 365–384. [CrossRef] [Google Scholar]
  18. T.A. Laursen, Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Springer, Berlin (2002). [Google Scholar]
  19. P.D. Panagiotopoulos, Inequality problems in mechanics and applications. Convex and nonconvex energy functions. Birkhäuser Boston, Boston (1985). [Google Scholar]
  20. I. Romero, The interpolation of rotations and its application to finite element models of geometrically exact rods. Comput. Mech. 34 (2004) 121–133. [MathSciNet] [Google Scholar]
  21. I. Romero and F. Armero, An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy-momentum conserving scheme in dynamics. Int. J. Numer. Meth. Eng. 54 (2002) 1683–1716. [CrossRef] [Google Scholar]
  22. M. Sofonea, M. Shillor and R. Touzani, Quasistatic frictional contact and wear of a beam. Dyn. Contin. Discrete I. 8 (2000) 201–218. [Google Scholar]
  23. G.E. Stavroulakis and H. Antes, Nonlinear boundary equation approach for inequality 2-D elastodynamics. Eng. Anal. Bound. Elem. 23 (1999) 487–501. [CrossRef] [Google Scholar]
  24. P. Wriggers, Computational contact mechanics. John Wiley and Sons Ltd (2002). [Google Scholar]
  25. H.W. Zhang, S.Y. He, X.S. Li and P. Wriggers, A new algorithm for numerical solution of 3D elastoplastic contact problems with orthotropic friction law. Comput. Mech. 34 (2004) 1–14. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you