Free Access
Issue
ESAIM: M2AN
Volume 40, Number 2, March-April 2006
Page(s) 269 - 294
DOI https://doi.org/10.1051/m2an:2006014
Published online 21 June 2006
  1. S.M. Alessandrini, D.N. Arnold, R.S. Falk and A.L. Madureira, Derivation and justification of plate models by variational methods, Centre de Recherches Math., CRM Proc. Lecture Notes (1999). [Google Scholar]
  2. D.N. Arnold and R.S. Falk, Asymptotic analysis of the boundary layer for the Reissner-Mindlin plate model. SIAM J. Math. Anal. 27 (1996) 486–514. [CrossRef] [MathSciNet] [Google Scholar]
  3. D.N. Arnold and A. Mardureira, Asymptotic estimates of hierarchical modeling. Math. Mod. Meth. Appl. S. 13 (2003). [Google Scholar]
  4. D.N. Arnold, A. Mardureira and S. Zhang, On the range of applicability of the Reissner–Mindlin and Kirchhoff–Love plate bending models, J. Elasticity 67 (2002) 171–185. [Google Scholar]
  5. J. Bergh and J. Lofstrom, Interpolation space: An introduction, Springer-Verlag (1976). [Google Scholar]
  6. C. Chen, Asymptotic convergence rates for the Kirchhoff plate model, Ph.D. Thesis, Pennsylvania State University (1995). [Google Scholar]
  7. P.G. Ciarlet, Mathematical elasticity, Vol II: Theory of plates. North-Holland (1997). [Google Scholar]
  8. M. Dauge, I. Djurdjevic and A. Rössle, Full Asymptotic expansions for thin elastic free plates, C.R. Acad. Sci. Paris Sér. I. 326 (1998) 1243–1248. [Google Scholar]
  9. M. Dauge, I. Gruais and A. Rössle, The influence of lateral boundary conditions on the asymptotics in thin elastic plates. SIAM J. Math. Anal. 31 (1999) 305–345. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Dauge, E. Faou and Z. Yosibash, Plates and shells: Asymptotic expansions and hierarchical models, in Encyclopedia of computational mechanics, E. Stein, R. de Borst, T.J.R. Hughes Eds., John Wiley & Sons, Ltd. (2004). [Google Scholar]
  11. K.O. Friedrichs and R.F. Dressler, A boundary-layer theory for elastic plates. Comm. Pure Appl. Math. XIV (1961) 1–33. [Google Scholar]
  12. T.J.R. Hughes, The finite element method: Linear static and dynamic finite element analysis. Prentice-Hall, Englewood Cliffs (1987). [Google Scholar]
  13. W.T. Koiter, On the foundations of linear theory of thin elastic shells. Proc. Kon. Ned. Akad. Wetensch. B73 (1970) 169–195. [Google Scholar]
  14. A.E.H. Love, A treatise on the mathematical theory of elasticity. Cambridge University Press (1934). [Google Scholar]
  15. D. Morgenstern, Herleitung der Plattentheorie aus der dreidimensionalen Elastizitatstheorie. Arch. Rational Mech. Anal. 4 (1959) 145–152. [CrossRef] [MathSciNet] [Google Scholar]
  16. P.M. Naghdi, The theory of shells and plates, in Handbuch der Physik, Springer-Verlag, Berlin, VIa/2 (1972) 425–640. [Google Scholar]
  17. W. Prager and J.L. Synge, Approximations in elasticity based on the concept of function space. Q. J. Math. 5 (1947) 241–269. [Google Scholar]
  18. E. Reissner, Reflections on the theory of elastic plates. Appl. Mech. Rev. 38 (1985) 1453–1464. [CrossRef] [Google Scholar]
  19. A. Rössle, M. Bischoff, W. Wendland and E. Ramm, On the mathematical foundation of the (1,1,2)-plate model. Int. J. Solids Structures 36 (1999) 2143–2168. [CrossRef] [Google Scholar]
  20. J. Sanchez-Hubert and E. Sanchez-Palencia, Coques élastiques minces: Propriétés asymptotiques, Recherches en mathématiques appliquées, Masson, Paris (1997). [Google Scholar]
  21. B. Szabó, I. Babuska, Finite Element analysis. Wiley, New York (1991). [Google Scholar]
  22. F.Y.M. Wan, Stress boundary conditions for plate bending. Int. J. Solids Structures 40 (2003) 4107–4123. [CrossRef] [Google Scholar]
  23. S. Zhang, Equivalence estimates for a class of singular perturbation problems. C.R. Acad. Sci. Paris, Ser. I 342 (2006) 285–288. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you