Free Access
Volume 40, Number 3, May-June 2006
Page(s) 501 - 527
Published online 22 July 2006
  1. M. Bern, D. Eppstein and J. Gilbert, Provably good mesh generation. J. Comput. Syst. Sci. 48 (1994) 384–409. [CrossRef] [MathSciNet] [Google Scholar]
  2. C. Bernardi and V. Girault, A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35 (1998) 1893–1916. [CrossRef] [MathSciNet] [Google Scholar]
  3. F. Brezzi and M. Fortin, A minimal stabilisation procedure for mixed finite element methods. Numer. Math. 89 (2001) 457–491. [CrossRef] [MathSciNet] [Google Scholar]
  4. F. Brezzi and J. Pitkäranta, On the stabilization of finite element approximations of the Stokes equations. In Efficient Solution of Elliptic Systems, W. Hackbusch Ed., Notes Num. Fluid Mech. 10 (1984) 11–19. [Google Scholar]
  5. Ph. Clément, Approximation by finite element functions using local regularization. Rev. Fr. Automat. Infor. R-2 (1975) 77–84. [Google Scholar]
  6. C.R. Dohrmann and P.B. Bochev, A stabilized finite element method for the Stokes problem based on polynomial pressure projections. Int. J. Numer. Meth. Fl. 46 (2004) 183–201. [CrossRef] [Google Scholar]
  7. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. Volume VII of Handbook of Numerical Analysis, North Holland (2000) 713–1020. [Google Scholar]
  8. R. Eymard, R. Herbin and J.C. Latché, Convergence analysis of a colocated finite volume scheme for the incompressible Navier-Stokes equations on general 2D or 3D meshes, SIAM J. Numer. Anal. (2006) (in press). [Google Scholar]
  9. R. Eymard, R. Herbin and J.C. Latché, On colocated clustered finite volume schemes for incompressible flow problems (2006) (in preparation). [Google Scholar]
  10. R. Eymard, R. Herbin, J.C. Latché and B. Piar, A colocated clustered finite volume schemes based on simplices for the 2D Stokes problem (2006) (in preparation). [Google Scholar]
  11. J.H. Ferziger and M. Perić, Computational Methods for Fluid Dynamics. Springer, third edition (2002). [Google Scholar]
  12. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer Series in Computational Mathematics. Springer-Verlag 5 (1986). [Google Scholar]
  13. F.H. Harlow and J.E. Welsh, Numerical calculation of time dependent viscous incompressible flow with free surface. Phys. Fluids 8 (1965) 2182–2189. [NASA ADS] [CrossRef] [Google Scholar]
  14. N. Kechkar and D. Silvester, Analysis of locally stabilized mixed finite element methods for the Stokes problem. Math. Comput. 58 (1992) 1–10. [CrossRef] [Google Scholar]
  15. J. Nečas, Equations aux dérivées partielles. Presses de l'Université de Montréal (1965). [Google Scholar]
  16. R.A. Nicolaides, Analysis and convergence of the MAC scheme I. The linear problem. SIAM J. Numer. Anal. 29 (1992) 1579–1591. [CrossRef] [MathSciNet] [Google Scholar]
  17. R.A. Nicolaides and X. Wu, Analysis and convergence of the MAC scheme II. Navier-Stokes equations. Math. Comput. 65 (1996) 29–44. [CrossRef] [Google Scholar]
  18. G. Papageorgakopoulos, G. Arampatzis and N.C. Markatos, Enhancement of the momentum interpolation method on non-staggered grids. Int. J. Numer. Meth. Fl. 33 (2000) 1–22. [CrossRef] [Google Scholar]
  19. M. Perić, R. Kessler and G. Scheurer, Comparison of finite-volume numerical methods with staggered and colocated grids. Comput. Fluids 16 (1988) 389–403. [CrossRef] [Google Scholar]
  20. B. Piar, PELICANS: Un outil d'implémentation de solveurs d'équations aux dérivées partielles. Note Technique 2004/33, IRSN, 2004. [Google Scholar]
  21. C.M. Rhie and W.L. Chow, Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA Journal 21 (1983) 1525–1532. [NASA ADS] [CrossRef] [Google Scholar]
  22. D.J. Silvester and N. Kechkar, Stabilised bilinear-constant velocity-pressure finite elements for the conjugate gradient solution of the Stokes problem. Comput. Method. Appl. M. 79 (1990) 71–86. [CrossRef] [Google Scholar]
  23. R. Verfürth, Error estimates for some quasi-interpolation operators. ESAIM: M2AN 33 (1999) 695–713. [CrossRef] [EDP Sciences] [Google Scholar]
  24. R. Verfürth, A note on polynomial approximation in Sobolev spaces. ESAIM: M2AN 33 (1999) 715–719. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you