Free Access
Issue
ESAIM: M2AN
Volume 41, Number 1, January-February 2007
Page(s) 129 - 145
DOI https://doi.org/10.1051/m2an:2007013
Published online 26 April 2007
  1. A. Arnold and F. Brezzi, Locking free finite element methods for shells. Math. Comp. 66 (1997) 1–14. [CrossRef] [MathSciNet] [Google Scholar]
  2. K.J. Bathe and D. Chapelle, The Finite Element Analysis of Shells - fundamentals. Computational Fluid and Solid Mechanics, Springer Verlag, New York (2003). [Google Scholar]
  3. J. Bathe, D. Chapelle and A. Iosilevich, An inf-sup test for shell finite elements. Comput. Structures 75 (2000) 439–456. [CrossRef] [MathSciNet] [Google Scholar]
  4. F. Ben Belgacem and Y. Maday, The mortar element method for three dimensional finite element. RAIRO Modél. Math. Anal. Numér. 31 (1997) 289–303. [MathSciNet] [Google Scholar]
  5. A. Blouza and H. Le Dret, Existence et unicité pour le modèle de Koiter pour une coque peu régulière. C.R. Acad. Sci. Paris 319 (1994) 1127–1132. [Google Scholar]
  6. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). [Google Scholar]
  7. F. Brezzi and D. Marini, Error estimates for the three-field formulation with bubble stabilization. Math. Comp. 70 (2000) 911–934. [CrossRef] [MathSciNet] [Google Scholar]
  8. M. Bernadou and P.G. Ciarlet, Sur l'ellipticité du modèle linéaire de coque de Koiter. Lecture Notes in Economics and Mathematical Systems, Springer Verlag, Berlin (1976). [Google Scholar]
  9. D. Chapelle and A. Ferent, Modeling of the inclusion of a reinforcing sheet within a 3D medium. Math. Models Methods Appl. Sci. 13 (2003) 573–595. [CrossRef] [MathSciNet] [Google Scholar]
  10. D. Chapelle and R. Stenberg, Stabilized finite element formulations for shells in a bending dominated state. SIAM J. Numer. Anal. 36 (1999) 32–73. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Diaz and D. Barthes-Biesel, Entrance of a bioartificial capsule in a pore. Comput. Modeling Engineering Sci. 3 (2002) 321–338. [Google Scholar]
  12. B. Flemisch, J.M. Melenk and B. Wohlmuth, Mortar methods with curved interfaces. Technical report, Max Planck Institute (2004). [Google Scholar]
  13. P. Hauret, Méthodes numériques pour la dynamique des structures non-linéaires incompressibles à deux échelles. Ph.D. thesis, École polytechnique, France (2004). [Google Scholar]
  14. P. Le Tallec and S. Mani, Numerical analysis of a linearized fluid-structure interaction problem. Numer. Math. 87 (2000) 317–354. [CrossRef] [MathSciNet] [Google Scholar]
  15. M.A. Puso, A 3D mortar method for solid mechanic. Int. J. Num. Meth. Engr. 59 (2004) 315–336. [CrossRef] [Google Scholar]
  16. L.R. Scott and S. Zhang, Finite element interpolation of non smooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483–493. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  17. R. Stenberg, A technique for analysing finite element methods for viscous incompressible flow. Int. J. Num. Meth. Fluids 11 (1990) 935–948. [CrossRef] [Google Scholar]
  18. B.I. Wohlmuth, Discretization methods and iterative solvers based on domain decomposition. Springer Verlag, New York (2001). [Google Scholar]
  19. G. Yang, M.C. Delfour and M. Fortin, Error Analysis of mixed finite element for cylindrical shells, Centre de Recherche Mathématiques, Proceedings and Lecture Notes 21 (1999). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you