Free Access
Volume 41, Number 1, January-February 2007
Page(s) 147 - 167
Published online 26 April 2007
  1. F. Alouges, S. Borel and D. Levadoux, A new well-conditionned integral formulation for Maxwell Equations in three dimensions. IEEE Trans. Ant. Prop. 53 (2005) 2995–3004. [CrossRef] [Google Scholar]
  2. S. Amini and S.M. Kirkup, Solution of Helmholtz equation in exterior domain by elementary boundary integral equations. J. Comput. Phys. 118 (1995) 208–221. [CrossRef] [MathSciNet] [Google Scholar]
  3. S. Amini and N.D. Maines, Preconditioned Krylov subspace methods for boundary element solution of the Helmholtz equation. Internat. J. Numer. Methods Engrg. 41 (1998) 875–898. [CrossRef] [MathSciNet] [Google Scholar]
  4. X. Antoine, Fast approximate computation of a time-harmonic scattered field using the On-Surface Radiation Condition method. IMA J. Appl. Math. 66 (2001) 83–110. [CrossRef] [MathSciNet] [Google Scholar]
  5. X. Antoine, Some Applications of the On-Surface Radiation Condition to the Integral Equations for Solving Electromagnetic Scattering Problems. Industrial Mathematics and Statistics, Narosa Publishing (2003). [Google Scholar]
  6. X. Antoine and M. Darbas, Alternative integral equations for the iterative solution of acoustic scattering problems. Quaterly J. Mech. Appl. Math. 58 (2005) 107–128. [CrossRef] [Google Scholar]
  7. X. Antoine, H. Barucq and A. Bendali, Bayliss-Turkel-like radiation condition on surfaces of arbitrary shape. J. Math. Anal. Appl. 229 (1999) 184–211. [Google Scholar]
  8. X. Antoine, A. Bendali and M. Darbas, Analytic preconditioners for the electric field integral equation. Internat. J. Numer. Methods Engrg. 61 (2004) 1310–1331. [CrossRef] [MathSciNet] [Google Scholar]
  9. X. Antoine, M.Darbas and Y.Y. Lu, An improved surface radiation condition for high-frequency acoustics scattering problems. Comput. Meth. Appl. Mech. Eng. 195 (2006) 4060–4074. [CrossRef] [Google Scholar]
  10. J.J. Bowman, T.B.A. Senior and P.L.E. Uslenghi, Electromagnetic and acoustic scattering by simple shapes. North-Holland Publishing Compagny, Amsterdam (1969). [Google Scholar]
  11. A. Brakhage and P. Werner, Über das Dirichletsche Aussenraumproblem für die Helmholtzsche Schwingungsgleichung. Arch. Math. 16 (1965) 325–329. [CrossRef] [MathSciNet] [Google Scholar]
  12. O.P. Bruno and L.A. Kunyansky, A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications. J. Comput. Phys. 169 (2001) 80–110. [CrossRef] [MathSciNet] [Google Scholar]
  13. O.P. Bruno and L.A. Kunyansky, Surface scattering in three dimensions: an accelerated high-order solver. P. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001) 2921–2934. [CrossRef] [Google Scholar]
  14. A. Buffa and R. Hiptmair, A coercive combined field integral equation for electromagnetic scattering. SIAM J. Numer. Anal. 42 (2004) 621–640. [CrossRef] [MathSciNet] [Google Scholar]
  15. A. Buffa and R. Hiptmair, Regularized combined field integral equations. Numer. Math. 100 (2005) 1–19. [CrossRef] [MathSciNet] [Google Scholar]
  16. D.C. Calvo, M.D. Collins and D.K. Dacol, A higher-order on-surface radiation condition derived from an analytic representation of a Dirichlet-to-Neumann map. IEEE. Trans. Antennas Progat. 51 (2003) 1607–1614. [CrossRef] [Google Scholar]
  17. S.L. Campbell, I.C.F. Ipsen, C.T. Kelley, C.D. Meyer and Z.Q. Xue, Convergence estimates for solution of integral equations with GMRES. J. Integral Equations Appl. 8 (1996) 19–34. [CrossRef] [MathSciNet] [Google Scholar]
  18. B. Carpintieri, I.S. Duff and L. Giraud, Experiments with sparse approximate preconditioning of dense linear problems from electromagnetic applications. Technical Report TR/PA/00/04, Cerfacs, France (2000). [Google Scholar]
  19. B. Carpintieri, I.S. Duff and L. Giraud, Sparse pattern selection strategies for robust Froebenius norm minimization preconditioners in electromagnetism, Preconditioning Techniques for Large Sparse Matrix Problems in Industrial Applications (Minneapolis, MN, 1999). Numer. Lin. Alg. Appl. 7 (2000) 667–685. [Google Scholar]
  20. G. Chen and J. Zhou, Boundary Element Methods. Academic Press, Harcourt Brace Jovanovitch, Publishers (1992). [Google Scholar]
  21. K. Chen, On a class of preconditioning methods for dense linear systems from boundary elements. SIAM J. Sci. Comput. 20 (1998) 684–698. [CrossRef] [MathSciNet] [Google Scholar]
  22. K. Chen, Discrete wavelet transforms accelerated sparse preconditioners for dense boundary element systems. Electron. Trans. Numer. Anal. 8 (1999) 138–153. [MathSciNet] [Google Scholar]
  23. K. Chen, An analysis of sparse approximate inverse preconditioners for boundary elements. SIAM J. Matrix Anal. Appl. 22 (2001) 1958–1978. [Google Scholar]
  24. K. Chen and P.J. Harris, Efficient preconditioners for iterative solution of the boundary element equations for the three-dimensional Helmholtz equation. Appl. Numer. Math. 36 (2001) 475–489. [CrossRef] [MathSciNet] [Google Scholar]
  25. W.C. Chew and Warnick, On the spectrum of the electric field integral equation and the convergence of the moment method. Internat. J. Numer. Methods Engrg. 51 (2001) 31–56. [CrossRef] [MathSciNet] [Google Scholar]
  26. W.C. Chew, J-M. Jin, E. Michielssen and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics. Artech House Antennas and Propagation Library, Norwood (2001). [Google Scholar]
  27. S.H. Christiansen and J.C. Nédélec, Des préconditionneurs pour la résolution numérique des équations intégrales de frontière de l'acoustique. C.R. Acad. Sci. Paris, Sér. I 330 (2000) 617–622. [Google Scholar]
  28. S.H. Christiansen and J.C. Nédélec, A preconditioner for the electric field integral equation based on Calderon formulas. SIAM J. Numer. Anal. 40 (2002) 1100–1135. [CrossRef] [MathSciNet] [Google Scholar]
  29. D. Colton and R. Kress, Integral Equations in Scattering Theory. Pure and Applied Mathematics, John Wiley and Sons, New York (1983). [Google Scholar]
  30. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory. Second Edition, Applied Mathematical Sciences 93, Springer-Verlag, Berlin (1998). [Google Scholar]
  31. M. Darbas, Préconditionneurs Analytiques de type Calderòn pour les Formulations Intégrales des Problèmes de Diffraction d'ondes. Ph.D. Thesis, Université P. Sabatier, Toulouse, France (November 2004). [Google Scholar]
  32. M. Darbas, Generalized CFIE for the iterative solution of 3-D Maxwell Equations. Appl. Math. Lett. 19 (2006) 834–839. [CrossRef] [MathSciNet] [Google Scholar]
  33. J.M. Ford, An improved discrete wavelet transform preconditioner for dense matrix problems. SIAM J. Matrix Anal. Appl. 25 (2003) 642–661. [CrossRef] [MathSciNet] [Google Scholar]
  34. R.F. Harrington and J.R. Mautz, H-field, E-field and combined field solution for conducting bodies of revolution. Arch. Elektron. Übertragungstech (AEÜ) 32 (1978) 157–164. [Google Scholar]
  35. P.L. Ho and Y.Y. Lu, Improving the beam propagation method for TM polarization. Opt. Quant. Electron. 35 (2003) 507–519. [CrossRef] [Google Scholar]
  36. D.S. Jones, Surface radiation conditions. IMA J. Appl. Math. 41 (1988) 21–30. [CrossRef] [MathSciNet] [Google Scholar]
  37. D.S. Jones, An approximate boundary condition in acoustics. J. Sound Vibr. 121 (1988) 37–45. [CrossRef] [Google Scholar]
  38. D.S. Jones, An improved surface radiation condition. IMA J. Appl. Math. 48 (1992) 163–193. [CrossRef] [MathSciNet] [Google Scholar]
  39. C.T. Kelley and Z.Q. Xue, GMRES and integral operators. SIAM J. Sci. Comput. 17 (1996) 217–226. [CrossRef] [MathSciNet] [Google Scholar]
  40. R. Kress, Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering. Quaterly J. Mech. Appl. Math. 38 (1985) 323–341. [CrossRef] [Google Scholar]
  41. G.A. Kriegsmann, A. Taflove and K.R. Umashankar, A new formulation of electromagnetic wave scattering using the on-surface radiation condition method. IEEE Trans. Antennas Propag. 35 (1987) 153–161. [Google Scholar]
  42. D.P. Levadoux and B.L. Michielsen, Analysis of a boundary integral equation for high frequency Helmholtz equation, 4th International Conference on Mathematical and Numerical Aspects of Wave Propagation, Golden, Colorado, 1–5 June (1998) 765–767. [Google Scholar]
  43. D.L. Levadoux and B.L. Michielsen, New integral equation formulations for wave scattering problems. ESAIM: M2AN 38 (2004) 157–176. [CrossRef] [EDP Sciences] [Google Scholar]
  44. Y.Y. Lu and P.L. Ho, Beam propagation method using a [(p - 1)/p] Padé approximant of the propagator. Opt. Lett. 27 (2002) 683–685. [CrossRef] [PubMed] [Google Scholar]
  45. W. Mc Lean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge, UK (2000). [Google Scholar]
  46. F.A. Milinazzo, C.A. Zala, G.H. Brooke, Rational square-root approximations for parabolic equation algorithms. J. Acoust. Soc. Am. 101 (1997) 760–766 [CrossRef] [Google Scholar]
  47. I. Moret, A note on the superlinear convergence of GMRES. SIAM J. Numer. Anal. 34 (1997) 513–516. [CrossRef] [MathSciNet] [Google Scholar]
  48. V. Rokhlin, Rapid solution of integral equations of scattering theory in two dimensions. J. Comput. Phys. 86 (1990) 414–439. [CrossRef] [MathSciNet] [Google Scholar]
  49. Y. Saad, Iterative Methods for Sparse Linear Systems. PWS Pub. Co., Boston (1996). [Google Scholar]
  50. Y. Saad and M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7 (1986) 856–869. [Google Scholar]
  51. O. Steinbach and W.L. Wendland, The construction of some efficient preconditioners in the boundary element method. Adv. Comput. Math. 9 (1998) 191–216. [CrossRef] [MathSciNet] [Google Scholar]
  52. D. Yevick, A guide to electric-field propagation techniques for guided-wave optics. Opt. Quant. Electron. 26 (1994) 185–197. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you