Free Access
Issue
ESAIM: M2AN
Volume 41, Number 4, July-August 2007
Page(s) 713 - 742
DOI https://doi.org/10.1051/m2an:2007038
Published online 04 October 2007
  1. L. Alaoul and A. Ern, Nonconforming finite element methods with subgrid viscosity applied to advection-diffusion-reaction equations. Numer. Meth. Part. Diff. Equat. 22 (2006) 1106–1126. [CrossRef] [Google Scholar]
  2. T. Apel, Anisotropic finite elements. Local estimates and applications. Advances in Numerical Mathematics. Teubner, Leipzig (1999). [Google Scholar]
  3. D.N. Arnold, D. Boffi and R.S. Falk, Approximation by quadrilateral finite elements. Math. Comput. 71 (2002) 909–922. [CrossRef] [MathSciNet] [Google Scholar]
  4. R. Becker and M. Braack, A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38 (2001) 173–199. [CrossRef] [MathSciNet] [Google Scholar]
  5. R. Becker and M. Braack, A two-level stabilization scheme for the Navier-Stokes equations, in Numerical mathematics and advanced applications, M. Feistauer et al. Eds., Berlin, Springer-Verlag (2004) 123–130. [Google Scholar]
  6. R. Becker and B. Vexler, Optimal control of the convection-diffusion equation using stabilized finite element methods. Numer. Math. 106 (2007) 349–367. [Google Scholar]
  7. M. Braack and E. Burman, Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM J. Numer. Anal. 43 (2006) 2544–2566. [CrossRef] [MathSciNet] [Google Scholar]
  8. M. Braack and T. Richter, Solutions of 3D Navier-Stokes benchmark problems with adaptive finite elements. Comput. Fluids 35 (2006) 372–392. [CrossRef] [Google Scholar]
  9. M. Braack and T. Richter, Stabilized finite elements for 3D reactive flows. Int. J. Numer. Methods Fluids 51 (2006) 981–999. [CrossRef] [Google Scholar]
  10. M. Braack and T. Richter, Solving multidimensional reactive flow problems with adaptive finite elements, in Reactive Flows, Diffusion and Transport, W. Jäger, R. Rannacher and J. Warnatz Eds., Springer-Verlag (2007) 93–112. [Google Scholar]
  11. M. Braack, E. Burman, V. John and G. Lube, Stabilized finite element methods for the generalized Oseen problem. Comput. Methods Appl. Mech. Engrg. 196 (2007) 853–866. [CrossRef] [MathSciNet] [Google Scholar]
  12. A.N. Brooks and T.J.R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 32 (1982) 199–259. [CrossRef] [MathSciNet] [Google Scholar]
  13. P.G. Ciarlet, The finite element method for elliptic problems. SIAM (2002). [Google Scholar]
  14. P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77–84. [Google Scholar]
  15. A. Ern and J.-L. Guermond, Theory and practice of finite elements, Applied Mathematical Sciences 159. Springer-Verlag, New York (2004). [Google Scholar]
  16. L.P. Franca and S.L. Frey, Stabilized finite element methods: II. The incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 99 (1992) 209–233. [CrossRef] [MathSciNet] [Google Scholar]
  17. T. Gelhard, G. Lube, M.A. Olshanskii and J.-H. Starcke, Stabilized finite element schemes with LBB-stable elements for incompressible flows. J. Comput. Appl. Math. 177 (2005) 243–267. [Google Scholar]
  18. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equation, SCM 5. Springer-Verlag, Berlin (1986). [Google Scholar]
  19. J.-L. Guermond, Stabilization of Galerkin approximations of transport equations by subgrid modelling. ESAIM: M2AN 33 (1999) 1293–1316. [CrossRef] [EDP Sciences] [Google Scholar]
  20. J.-L. Guermond, Subgrid stabilization of Galerkin approximations of linear contraction semi-groups of class C0. Comput. Visual. Sci. 2 (1999) 131–138. [CrossRef] [Google Scholar]
  21. J.-L. Guermond, Subgrid stabilization of Galerkin approximations of linear contraction semi-groups of class C0 in Hilbert spaces. Numer. Meth. Part. Diff. Equat. 17 (2001) 1–25. [CrossRef] [Google Scholar]
  22. J.-L. Guermond, Subgrid stabilization of Galerkin approximations of linear monotone operators. IMA J. Numer. Anal. 21 (2001) 165–197. [CrossRef] [MathSciNet] [Google Scholar]
  23. J.-L. Guermond, A. Marra and L. Quartapelle, Subgrid stabilized projection method for 2d unsteady flows at high Reynolds numbers. Comput. Methods Appl. Mech. Engrg. 195 (2006) 5857–5876. [CrossRef] [MathSciNet] [Google Scholar]
  24. T.J.R. Hughes, Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Engrg. 127 (1995) 387–401. [CrossRef] [MathSciNet] [Google Scholar]
  25. T.J.R. Hughes and G. Sangalli, Variational multiscale analysis: Projection, optimization, the fine-scale Greens' function, and stabilized methods. USNCCM8, Austin (2005) 27–29. [Google Scholar]
  26. T.J.R. Hughes and G. Sangalli, Variational multiscale analysis: The fine-scale Green's function, projection, optimization, localization, and stabilized methods. SIAM J. Numer. Anal. 45 (2007) 539–367. [Google Scholar]
  27. T.J.R. Hughes, L.P. Franca and M. Balestra, A new finite element formulation for computational fluid dynamics. V: Circumventing the Babuška-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accomodating equal-order interpolations. Comput. Methods Appl. Mech. Engrg. 59 (1986) 85–99. [CrossRef] [MathSciNet] [Google Scholar]
  28. V. John, On large eddy simulation and variational multiscale methods in the numerical simulation of turbulent flows. Appl. Math. 51 (2006) 321–353. [CrossRef] [MathSciNet] [Google Scholar]
  29. V. John and S. Kaya, A finite element variational multiscale method for the Navier-Stokes equations. SIAM J. Sci. Comput. 26 (2006) 1485–1503. [Google Scholar]
  30. V. John, S. Kaya and W.J. Layton, A two-level variational multiscale method for convection-dominated convection-diffusion equations. Comput. Methods Appl. Mech. Engrg. 195 (2006) 4594–4603. [Google Scholar]
  31. S. Kaya and B. Rivière, A two-grid stabilization method for solving the steady-state Navier-Stokes equations. Numer. Meth. Part. Diff. Equat. 22 (2005) 728–743. [CrossRef] [Google Scholar]
  32. G. Lube, Stabilized FEM for incompressible flow. Critical review and new trends, in European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006, P. Wesseling, E. Onate and J. Périaux Eds., The Netherlands (2006) 1–20 TU Delft. [Google Scholar]
  33. G. Lube and G. Rapin, Residual-based stabilized higher-order FEM for a generalized Oseen problem. Math. Models Methods Appl. Sci. 16 (2006) 949–966. [Google Scholar]
  34. G. Matthies, Mapped finite elements on hexahedra. Necessary and sufficient conditions for optimal interpolation errors. Numer. Algorithms 27 (2001) 317–327. [CrossRef] [MathSciNet] [Google Scholar]
  35. G. Matthies and G. Lube, On streamline-diffusion methods of inf-sup stable discretisations of the generalised Oseen problem. Preprint 2007-02, Institut für Numerische und Angewandte Mathematik, Georg-August-Universiät Göttingen (2007). [Google Scholar]
  36. G. Matthies and L. Tobiska, The inf-sup condition for the mapped Formula element in arbitrary space dimension. Computing 69 (2002) 119–139. [CrossRef] [MathSciNet] [Google Scholar]
  37. H.-G. Roos, M. Stynes and L. Tobiska, Numerical methods for singularly perturbed differential equations. Convection-diffusion and flow problems, SCM 24. Springer-Verlag, Berlin (1996). [Google Scholar]
  38. L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. [Google Scholar]
  39. R. Stenberg, Analysis of mixed finite element methods for the Stokes problem: A unified approach. Math. Comput. 42 (1999) 9–23. [Google Scholar]
  40. L. Tobiska, Analysis of a new stabilized higher order finite element method for advection-diffusion equations. Comput. Methods Appl. Mech. Engrg. 196 (2006) 538–550. [CrossRef] [MathSciNet] [Google Scholar]
  41. L. Tobiska and R. Verfürth, Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equation. SIAM J. Numer. Anal. 33 (1996) 107–127. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you