Free Access
Issue
ESAIM: M2AN
Volume 41, Number 4, July-August 2007
Page(s) 771 - 799
DOI https://doi.org/10.1051/m2an:2007041
Published online 04 October 2007
  1. S. Alinhac and P. Gérard, Opérateurs pseudo-différentiels et théorème de Nash-Moser. Savoirs Actuels, InterEditions, Paris, Editions du Centre National de la Recherche Scientifique (CNRS), Meudon (1991) p. 190. [Google Scholar]
  2. B. Alvarez-Samaniego and D. Lannes, Large time existence for 3D water-waves and asymptotics. Technical report (http://fr.arxiv.org/abs/math/0702015v1), Université Bordeaux I, IMB (2007). [Google Scholar]
  3. B. Alvarez-Samaniego and D. Lannes, A Nash-Moser theorem for singular evolution equations. Application to the Serre and Green-Naghdi equations. Preprint (http://arxiv.org/abs/math.AP/0701681v1), Indiana University Mathematical Journal (2007) (to appear). [Google Scholar]
  4. T.B. Benjamin, J.L. Bona and J.J. Mahony, Model equations for long waves in nonlinear dispersive systems. Philos. Trans. Roy. Soc. London Ser. A 272 (1972) 47–78. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.L. Bona and M. Chen, A Boussinesq system for two-way propagation of nonlinear dispersive waves. Physica D 116 (2004) 191–224. [CrossRef] [MathSciNet] [Google Scholar]
  6. J.L. Bona, M. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I: Derivation and linear theory. J. Nonlinear Sci. 12 (2002) 283–318. [CrossRef] [MathSciNet] [Google Scholar]
  7. J.L. Bona, M. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. II: Nonlinear theory. Nonlinearity 17 (2004) 925–952. [CrossRef] [MathSciNet] [Google Scholar]
  8. J.L. Bona, T. Colin and D. Lannes, Long waves approximations for water waves. Arch. Rational Mech. Anal. 178 (2005) 373–410. [CrossRef] [MathSciNet] [Google Scholar]
  9. M.J. Boussinesq, Théorie de l'intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire. C.R. Acad. Sci. Paris Sér. A-B 72 (1871) 755–759. [Google Scholar]
  10. M. Chen, Equations for bi-directional waves over an uneven bottom. Math. Comput. Simulation 62 (2003) 3–9. [CrossRef] [MathSciNet] [Google Scholar]
  11. W. Craig, An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits. Comm. Partial Differential Equations 10 (1985) 787–1003. [CrossRef] [MathSciNet] [Google Scholar]
  12. M.W. Dingemans, Water Wave Propagation over uneven bottoms. Part I: Linear Wave Propagation. Adanced Series on Ocean Engineering 13. World Scientific (1997). [Google Scholar]
  13. M.W. Dingemans, Water Wave Propagation over uneven bottoms. Part II: Non-linear Wave Propagation. Adanced Series on Ocean Engineering 13. World Scientific (1997). [Google Scholar]
  14. A.E. Green and P.M. Naghdi, A derivation of equations for wave propagation in water of variable depth. J. Fluid Mech. 78 (1976) 237–246. [CrossRef] [Google Scholar]
  15. T. Iguchi, A long wave approximation for capillary-gravity waves and an effect of the bottom. Preprint (2005). [Google Scholar]
  16. T. Iguchi, A mathematical justification of the forced Korteweg-de Vries equation for capillary-gravity waves. Kyushu J. Math. 60 (2006) 267–303. [CrossRef] [MathSciNet] [Google Scholar]
  17. J.T. Kirby, Gravity Waves in Water of Finite Depth, Advances in Fluid Mechanics 10, in J.N. Hunt Ed., Computational Mechanics Publications (1997) 55–125. [Google Scholar]
  18. D. Lannes, Sur le caractère bien posé des équations d'Euler avec surface libre. Séminaire EDP de l'École Polytechnique (2004), Exposé no. XIV. [Google Scholar]
  19. D. Lannes, Well-posedness of the water-waves equations. J. Amer. Math. Soc. 18 (2005) 605–654. [CrossRef] [MathSciNet] [Google Scholar]
  20. D. Lannes and J.C. Saut, Weakly transverse Boussinesq systems and the Kadomtsev–Petviashvili approximation. Nonlinearity 19 (2006) 2853–2875. [CrossRef] [MathSciNet] [Google Scholar]
  21. P.A. Madsen, R. Murray and O.R. Sorensen, A new form of the Boussinesq equations with improved linear dispersion characteristics (Part 1). Coastal Eng. 15 (1991) 371–388. [CrossRef] [Google Scholar]
  22. G. Métivier, Small Viscosity and Boundary Layer Methods: Theory, Stability Analysis, and Applications. Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, Boston-Basel-Berlin (2004). [Google Scholar]
  23. D.P. Nicholls and F. Reitich, A new approach to analyticity of Dirichlet-Neumann operators. Proc. Royal Soc. Edinburgh Sect. A 131 (2001) 1411–1433. [CrossRef] [MathSciNet] [Google Scholar]
  24. V.I. Nalimov, The Cauchy-Poisson problem. (Russian) Dinamika Splošn. Sredy Vyp. 18, Dinamika Zidkost. so Svobod. Granicami 254 (1974) 104–210. [Google Scholar]
  25. O. Nwogu, Alternative form of Boussinesq equations for nearshore wave propagation. J. Waterw. Port Coastal Eng. ASCE 119 (1993) 618–638. [CrossRef] [Google Scholar]
  26. D.H. Peregrine, Long waves on a beach. J. Fluid Mech. 27 (1967) 815–827. [CrossRef] [Google Scholar]
  27. G. Schneider and C.E. Wayne, The long-wave limit for the water-wave problem. I. The case of zero surface tension. Comm. Pure Appl. Math. 162 (2002) 247–285. [Google Scholar]
  28. G. Wei and J.T. Kirby, A time-dependent numerical code for extended Boussinesq equations. J. Waterw. Port Coastal Ocean Engineering 120 (1995) 251–261. [CrossRef] [Google Scholar]
  29. G. Wei, J.T. Kirby, S.T. Grilli and R. Subramanya, A fully nonlinear Boussinesq model for surface waves. I. Highly nonlinear, unsteady waves. J. Fluid Mechanics 294 (1995) 71–92. [CrossRef] [Google Scholar]
  30. S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130 (1997) 39–72. [CrossRef] [MathSciNet] [Google Scholar]
  31. S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Amer. Math. Soc. 12 (1999) 445–495. [CrossRef] [MathSciNet] [Google Scholar]
  32. H. Yosihara, Gravity waves on the free surface of an incompressible perfect fluid of finite depth. Publ. Res. Inst. Math. Sci. 18 (1982) 49–96. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you