Free Access
Issue
ESAIM: M2AN
Volume 42, Number 1, January-February 2008
Page(s) 93 - 112
DOI https://doi.org/10.1051/m2an:2007055
Published online 12 January 2008
  1. D. Aregba-Driollet and R. Natalini, Discrete kinetic schemes for multidimensional systems of conservation laws. SIAM J. Numer. Anal. 37 (2000) 1973–2004. [CrossRef] [MathSciNet] [Google Scholar]
  2. D. Aregba-Driollet, R. Natalini and S. Tang, Explicit diffusive kinetic schemes for nonlinear degenerate parabolic systems. Math. Comp. 73 (2004) 63–94. [CrossRef] [MathSciNet] [Google Scholar]
  3. M.K. Banda, A. Klar, L. Pareschi and M. Seaid, Compressible and incompressible limits for hyperbolic systems with relaxation. J. Comput. Appl. Math. 168 (2004) 41–52. [CrossRef] [MathSciNet] [Google Scholar]
  4. S. Bianchini, Hyperbolic limit of the Jin-Xin relaxation model. Comm. Pure Appl. Math. 59 (2006) 688–753. [CrossRef] [MathSciNet] [Google Scholar]
  5. Y. Brenier, R. Natalini and M. Puel, On a relaxation approximation of the incompressible Navier-Stokes equations. Proc. Amer. Math. Soc. 132 (2004) 1021–1028. [CrossRef] [MathSciNet] [Google Scholar]
  6. B.M. Boghosian, P.J. Love, P.V. Coveney, I.V. Karlin, S. Succi and J. Yepez, Galilean-invariant Lattice-Boltzmann models with H theorem. Phys. Rev. E 68 (2003) 25103–25106. [CrossRef] [Google Scholar]
  7. F. Bouchut, Construction of BGK models with a family of kinetic entropies for a given system of conservation laws. J. Statist. Phys. 95 (1999) 113–170. [CrossRef] [MathSciNet] [Google Scholar]
  8. F. Bouchut, Entropy satisfying flux vector splittings and kinetic BGK models. Numer. Math. 94 (2003) 623–672. [MathSciNet] [Google Scholar]
  9. F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources, Frontiers in Mathematics series. Birkhäuser (2004). [Google Scholar]
  10. A.J. Chorin, Numerical solution of the Navier-Stokes equations. Math. Comput. 22 (1968) 745–762. [CrossRef] [MathSciNet] [Google Scholar]
  11. D. Donatelli and P. Marcati, Convergence of singular limits for multi-D semilinear hyperbolic systems to parabolic systems. Trans. Amer. Math. Soc. 356 (2004) 2093–2121. [CrossRef] [MathSciNet] [Google Scholar]
  12. W. E and J.G. Liu, Projection method. I. Convergence and numerical boundary layers. SIAM J. Numer. Anal. 32 (1995) 1017–1057; Projection method. II. Godunov-Ryabenki analysis. SIAM J. Numer. Anal. 33 (1996) 1597–1621. [CrossRef] [MathSciNet] [Google Scholar]
  13. T.Y. Hou and B.T.R. Wetton, Second-order convergence of a projection scheme for the incompressible Navier-Stokes equations with boundaries. SIAM J. Numer. Anal. 30 (1993) 609–629. [CrossRef] [MathSciNet] [Google Scholar]
  14. M. Junk, Kinetic schemes in the case of low Mach numbers. J. Comput. Phys. 151 (1999) 947–968. [CrossRef] [MathSciNet] [Google Scholar]
  15. M. Junk and A. Klar, Discretization for the incompressible Navier-Stokes equations based on the Lattice Boltzmann method. SIAM J. Sci. Comp. 22 (2000) 1–19. [CrossRef] [Google Scholar]
  16. M. Junk and W.A. Yong, Rigorous Navier-Stokes limit of the Lattice Boltzmann equation. Asymptot. Anal. 35 (2003) 165–185. [MathSciNet] [Google Scholar]
  17. J. Kim and P. Moin, Application of a fractional-step method to incompressible Navier-Stokes. J. Comput. Phys. 59 (1985) 308–323. [CrossRef] [MathSciNet] [Google Scholar]
  18. R. Natalini, A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws. J. Diff. Equation 148 (1998) 292–317. [CrossRef] [MathSciNet] [Google Scholar]
  19. R. Natalini and F. Rousset, Convergence of a singular Euler-Poisson approximation of the incompressible Navier-Stokes equations. Proc. Am. Math. Soc. 134 (2006) 2251–2258. [CrossRef] [Google Scholar]
  20. B. Perthame, Kinetic formulation of conservation laws, Oxford Lecture Series in Mathematics and its Applications 21. Oxford University Press, Oxford (2002). [Google Scholar]
  21. M. Reider and J. Sterling, Accuracy of discrete velocity BGK models for the simulation of the incompressible Navier-Stokes equations. Comput. Fluids 24 (1995) 459–467. [CrossRef] [MathSciNet] [Google Scholar]
  22. S. Succi, The Lattice Boltzmann Equation. Oxford University Press, Oxford (2001). [Google Scholar]
  23. R. Temam, Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. I. Arch. Ration. Mech. Anal. 32 (1969) 135–153; Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. II. Arch. Ration. Mech. Anal. 33 (1969) 377–385. [Google Scholar]
  24. B.R. Wetton, Analysis of the spatial error for a class of finite difference methods for viscous incompressible flow. SIAM J. Numer. Anal. 34 (1997) 723–755; Error analysis for Chorin's original fully discrete projection method and regularizations in space and time. SIAM J. Numer. Anal. 34 (1997) 1683–1697. [CrossRef] [MathSciNet] [Google Scholar]
  25. D.A. Wolf-Gladrow, Lattice-gas cellular automata and Lattice Boltzmann models. An introduction, Lecture Notes in Mathematics 1725. Springer-Verlag, Berlin (2000). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you