Free Access
Issue
ESAIM: M2AN
Volume 42, Number 1, January-February 2008
Page(s) 113 - 139
DOI https://doi.org/10.1051/m2an:2007058
Published online 12 January 2008
  1. S. Antman, Nonlinear problems of elasticity, Applied Mathematical Sciences 107. Springer, New York, second edition (2005). [Google Scholar]
  2. X. Blanc, C. Le Bris and F. Legoll, Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics. ESAIM: M2AN 39 (2005) 797–826. [Google Scholar]
  3. X. Blanc, C. Le Bris and P.-L. Lions, Atomistic to continuum limits for computational materials science. ESAIM: M2AN 41 (2007) 391–426. [Google Scholar]
  4. R.F. Brown, A Topological Introduction to Nonlinear Analysis. Birkhäuser (2004). [Google Scholar]
  5. W. E and P. Ming, Analysis of multiscale methods. J. Comput. Math. 22 (2004) 210–219. [MathSciNet] [Google Scholar]
  6. W. E and P. Ming, Analysis of the local quasicontinuum method, in Frontiers and Prospects of Contemporary Applied Mathematics, T. Li and P. Zhang Eds., Higher Education Press, World Scientific, Singapore (2005) 18–32. [Google Scholar]
  7. W. E and P. Ming, Cauchy-born rule and the stabilitiy of crystalline solids: Static problems. Arch. Ration. Mech. Anal. 183 (2007) 241–297. [CrossRef] [MathSciNet] [Google Scholar]
  8. W. E, J. Lu and J. Yang, Uniform accuracy of the quasicontinuum method. Phys. Rev. B 74 (2006) 214115. [CrossRef] [Google Scholar]
  9. W. Fleming, Functions of Several Variables. Springer-Verlag (1977). [Google Scholar]
  10. J. Knap and M. Ortiz, An analysis of the quasicontinuum method. J. Mech. Phys. Solids 49 (2001) 1899–1923. [CrossRef] [Google Scholar]
  11. P. Lin, Theoretical and numerical analysis for the quasi-continuum approximation of a material particle model. Math. Comp. 72 (2003) 657–675 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  12. P. Lin, Convergence analysis of a quasi-continuum approximation for a two-dimensional material. SIAM J. Numer. Anal. 45 (2007) 313–332. [CrossRef] [MathSciNet] [Google Scholar]
  13. M. Marder, Condensed Matter Physics. John Wiley & Sons (2000). [Google Scholar]
  14. R. Miller and E. Tadmor, The quasicontinuum method: Overview, applications and current directions. J. Comput. Aided Mater. Des. 9 (2002) 203–239. [CrossRef] [Google Scholar]
  15. R. Miller, L. Shilkrot and W. Curtin, A coupled atomistic and discrete dislocation plasticity simulation of nano-indentation into single crystal thin films. Acta Mater. 52 (2003) 271–284. [CrossRef] [Google Scholar]
  16. J.T. Oden, S. Prudhomme, A. Romkes and P. Bauman, Multi-scale modeling of physical phenomena: Adaptive control of models. SIAM J. Sci. Comput. 28 (2006) 2359–2389. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  17. C. Ortner and E. Süli, A posteriori analysis and adaptive algorithms for the quasicontinuum method in one dimension. Technical report, Oxford Numerical Analysis Group (2006). [Google Scholar]
  18. C. Ortner and E. Süli, A priori analysis of the quasicontinuum method in one dimension. Technical report, Oxford Numerical Analysis Group (2006). [Google Scholar]
  19. S. Prudhomme, P.T. Bauman and J.T. Oden, Error control for molecular statics problems. Int. J. Multiscale Comput. Eng. 4 (2006) 647–662. [CrossRef] [Google Scholar]
  20. D. Rodney and R. Phillips, Structure and strength of dislocation junctions: An atomic level analysis. Phys. Rev. Lett. 82 (1999) 1704–1707. [CrossRef] [Google Scholar]
  21. D. Serre, Matrices: Theory and applications, Graduate Texts in Mathematics 216. Springer-Verlag, New York (2002). Translated from the 2001 French original. [Google Scholar]
  22. V. Shenoy, R. Miller, E. Tadmor, D. Rodney, R. Phillips and M. Ortiz, An adaptive finite element approach to atomic-scale mechanics — the quasicontinuum method. J. Mech. Phys. Solids 47 (1999) 611–642. [CrossRef] [MathSciNet] [Google Scholar]
  23. T. Shimokawa, J. Mortensen, J. Schiotz and K. Jacobsen, Matching conditions in the quasicontinuum method: Removal of the error introduced at the interface between the coarse-grained and fully atomistic regions. Phys. Rev. B 69 (2004) 214104. [CrossRef] [Google Scholar]
  24. E. Tadmor, M. Ortiz and R. Phillips, Quasicontinuum analysis of defects in solids. Phil. Mag. A 73 (1996) 1529–1563. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you