Free Access
Issue
ESAIM: M2AN
Volume 42, Number 1, January-February 2008
Page(s) 57 - 91
DOI https://doi.org/10.1051/m2an:2007057
Published online 12 January 2008
  1. X. Blanc, C. Le Bris and F. Legoll, Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics: the convex case. Acta Math. Appl. Sinica English Series 23 (2007) 209–216. [CrossRef] [Google Scholar]
  2. A. Braides and M.S. Gelli, Continuum limits of discrete systems without convexity hypotheses. Math. Mech. Solids 7 (2002) 41–66. [CrossRef] [MathSciNet] [Google Scholar]
  3. A. Braides, G. Dal Maso and A. Garroni, Variational formulation of softening phenomena in fracture mechanics: the one-dimensional case. Arch. Ration. Mech. Anal. 146 (1999) 23–58. [CrossRef] [MathSciNet] [Google Scholar]
  4. A. Braides, A.J. Lew and M. Ortiz, Effective cohesive behavior of layers of interatomic planes. Arch. Ration. Mech. Anal. 180 (2006) 151–182. [CrossRef] [MathSciNet] [Google Scholar]
  5. F. Brezzi, J. Rappaz and P.-A. Raviart, Finite-dimensional approximation of nonlinear problems. I. Branches of nonsingular solutions. Numer. Math. 36 (1980) 1–25. [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Dobson and M. Luskin, Analysis of a force-based quasicontinuum approximation. ESAIM: M2AN 42 (2008) 113–139. [CrossRef] [EDP Sciences] [Google Scholar]
  7. G. Dolzmann, Optimal convergence for the finite element method in Campanato spaces. Math. Comp. 68 (1999) 1397–1427. [CrossRef] [MathSciNet] [Google Scholar]
  8. W. E and B. Engquist, The heterogeneous multiscale methods. Commun. Math. Sci. 1 (2003) 87–132. [CrossRef] [MathSciNet] [Google Scholar]
  9. W. E and P. Ming, Analysis of multiscale methods. J. Comput. Math. 22 (2004) 210–219. Special issue dedicated to the 70th birthday of Professor Zhong-Ci Shi. [MathSciNet] [Google Scholar]
  10. W. E and P. Ming, Analysis of the local quasicontinuum method, in Frontiers and prospects of contemporary applied mathematics, Ser. Contemp. Appl. Math. CAM 6, Higher Ed. Press, Beijing (2005) 18–32. [Google Scholar]
  11. D.J. Higham, Trust region algorithms and timestep selection. SIAM J. Numer. Anal. 37 (1999) 194–210. [CrossRef] [MathSciNet] [Google Scholar]
  12. J.E. Jones, On the Determination of Molecular Fields. III. From Crystal Measurements and Kinetic Theory Data. Proc. Roy. Soc. London A. 106 (1924) 709–718. [CrossRef] [Google Scholar]
  13. B. Lemaire, The proximal algorithm, in New methods in optimization and their industrial uses (Pau/Paris, 1987), of Internat. Schriftenreihe Numer. Math. 87, Birkhäuser, Basel (1989) 73–87. [Google Scholar]
  14. P. Lin, Theoretical and numerical analysis for the quasi-continuum approximation of a material particle model. Math. Comp. 72 (2003) 657–675. [CrossRef] [MathSciNet] [Google Scholar]
  15. P. Lin, Convergence analysis of a quasi-continuum approximation for a two-dimensional material without defects. SIAM J. Numer. Anal. 45 (2007) 313–332 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  16. R.E. Miller and E.B. Tadmor, The quasicontinuum method: overview, applications and current directions. J. Computer-Aided Mater. Des. 9 (2003) 203–239. [CrossRef] [Google Scholar]
  17. P.M. Morse, Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. 34 (1929) 57–64. [CrossRef] [Google Scholar]
  18. M. Ortiz, R. Phillips and E.B. Tadmor, Quasicontinuum analysis of defects in solids. Philos. Mag. A 73 (1996) 1529–1563. [CrossRef] [Google Scholar]
  19. C. Ortner, Gradient flows as a selection procedure for equilibria of nonconvex energies. SIAM J. Math. Anal. 38 (2006) 1214–1234 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  20. C. Ortner and E. Süli, A posteriori analysis and adaptive algorithms for the quasicontinuum method in one dimension. Technical Report NA06/13, Oxford University Computing Laboratory (2006). [Google Scholar]
  21. C. Ortner and E. Süli, Discontinuous Galerkin finite element approximation of nonlinear second-order elliptic and hyperbolic systems. SIAM J. Numer. Anal. 45 (2007) 1370–1397. [CrossRef] [MathSciNet] [Google Scholar]
  22. M. Plum, Computer-assisted enclosure methods for elliptic differential equations. Linear Algebra Appl. 324 (2001) 147–187. Special issue on linear algebra in self-validating methods. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  23. L. Truskinovsky, Fracture as a phase transformation, in Contemporary research in mechanics and mathematics of materials, R.C. Batra and M.F. Beatty Eds., CIMNE (1996) 322–332. [Google Scholar]
  24. R. Verfürth, A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations. Math. Comp. 62 (1994) 445–475. [MathSciNet] [Google Scholar]
  25. E. Zeidler, Nonlinear functional analysis and its applications. I Fixed-point theorems. Springer-Verlag, New York (1986). Translated from the German by Peter R. Wadsack. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you