Free Access
Volume 42, Number 4, July-August 2008
Page(s) 565 - 591
Published online 27 May 2008
  1. Y. Achdou and N. Tchou, A finite difference scheme on a non commutative group. Numer. Math. 89 (2001) 401–424. [MathSciNet] [Google Scholar]
  2. M. Bardi, A boundary value problem for the minimum-time function. SIAM J. Control Optim. 27 (1989) 776–785. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Systems & Control: Foundations & Applications. Birkhäuser Boston Inc., Boston, MA (1997). With appendices by M. Falcone and P. Soravia. [Google Scholar]
  4. G. Barles and E.R. Jakobsen, Error bounds for monotone approximation schemes for Hamilton-Jacobi-Bellman equations. SIAM J. Numer. Anal. 43 (2005) 540–558 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  5. R. Beals, B. Gaveau and P.C. Greiner, Hamilton-Jacobi theory and the heat kernel on Heisenberg groups. J. Math. Pures Appl. 79 (2000) 633–689. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Bellaïche and J.-J. Risler, Eds., Sub-Riemannian Geometry, Progress in Mathematics 144. Birkhäuser Verlag, Basel (1996). [Google Scholar]
  7. I. Birindelli and J. Wigniolle, Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Commun. Pure Appl. Anal. 2 (2003) 461–479. [CrossRef] [MathSciNet] [Google Scholar]
  8. R.W. Brockett, Control theory and singular Riemannian geometry, in New directions in applied mathematics (Cleveland, Ohio, 1980), Springer, New York (1982) 11–27. [Google Scholar]
  9. I. Capuzzo Dolcetta, On a discrete approximation of the Hamilton-Jacobi equation of dynamic programming. Appl. Math. Optim. 10 (1983) 367–377. [CrossRef] [MathSciNet] [Google Scholar]
  10. I. Capuzzo Dolcetta, The Hopf-Lax solution for state dependent Hamilton-Jacobi equations (Viscosity solutions of differential equations and related topics) (Japanese). Sūrikaisekikenkyūsho Kōkyūroku 1287 (2002) 143–154. [Google Scholar]
  11. I. Capuzzo Dolcetta, The Hopf solution of Hamilton-Jacobi equations, in Elliptic and parabolic problems (Rolduc/Gaeta, 2001), World Sci. Publishing, River Edge, NJ (2002) 343–351. [Google Scholar]
  12. I. Capuzzo Dolcetta, A generalized Hopf-Lax formula: analytical and approximations aspects, in Geometric Control and Nonsmooth Analysis, F. Ancona, A. Bressan, P. Cannarsa, F. Clarkeă and P.R. Wolenski Eds., Series on Advances in Mathematics for Applied Sciences 76, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2008). [Google Scholar]
  13. I. Capuzzo Dolcetta and H. Ishii, Approximate solutions of the Bellman equation of deterministic control theory. Appl. Math. Optim. 11 (1984) 161–181. [CrossRef] [MathSciNet] [Google Scholar]
  14. M.G. Crandall and P.-L. Lions, Two approximations of solutions of Hamilton-Jacobi equations. Math. Comp. 43 (1984) 1–19. [Google Scholar]
  15. A. Cutrí and F. Da Lio, Comparison and existence results for evolutive non-coercive first-order Hamilton-Jacobi equations. ESAIM: COCV 13 (2007) 484–502. [CrossRef] [EDP Sciences] [Google Scholar]
  16. B. Engquist and S. Osher, One-sided difference approximations for nonlinear conservation laws. Math. Comp. 36 (1981) 321–351. [CrossRef] [MathSciNet] [Google Scholar]
  17. M. Falcone, A numerical approach to the infinite horizon problem of deterministic control theory. Appl. Math. Optim. 15 (1987) 1–13. [CrossRef] [MathSciNet] [Google Scholar]
  18. M. Falcone and R. Ferretti, Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations. Numer. Math. 67 (1994) 315–344. [CrossRef] [MathSciNet] [Google Scholar]
  19. S. Gottlieb, C.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods. SIAM Rev. 43 (2001) 89–112 (electronic). [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  20. A. Harten, B. Engquist, S. Osher and S.R. Chakravarthy, Uniformly high-order accurate essentially nonoscillatory schemes. III. J. Comput. Phys. 71 (1987) 231–303. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  21. A. Korányi and H.M. Reimann, Quasiconformal mappings on the Heisenberg group. Invent. Math. 80 (1985) 309–338. [CrossRef] [MathSciNet] [Google Scholar]
  22. N.V. Krylov, On the rate of convergence of finite-difference approximations for Bellman's equations with variable coefficients. Probab. Theory Relat. Fields 117 (2000) 1–16. [CrossRef] [MathSciNet] [Google Scholar]
  23. N.V. Krylov, The rate of convergence of finite-difference approximations for Bellman equations with Lipschitz coefficients. Appl. Math. Optim. 52 (2005) 365–399. [CrossRef] [MathSciNet] [Google Scholar]
  24. J.J. Manfredi and B. Stroffolini, A version of the Hopf-Lax formula in the Heisenberg group. Comm. Partial Diff. Eq. 27 (2002) 1139–1159. [CrossRef] [Google Scholar]
  25. S. Osher and J.A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1988) 12–49. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  26. S. Osher and C.-W. Shu, High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28 (1991) 907–922. [CrossRef] [MathSciNet] [Google Scholar]
  27. J.A. Sethian, Level set methods and fast marching methods, Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, Cambridge Monographs on Applied and Computational Mathematics 3. Cambridge University Press, Cambridge, 2nd edition (1999). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you