Free Access
Volume 42, Number 6, November-December 2008
Page(s) 1047 - 1064
Published online 25 September 2008
  1. V.I. Arnold, V.V. Kozlov and A.I. Neishtadt, Mathematical aspects of classical and celestial mechanics. Springer-Verlag, Berlin (1997). Translated from the 1985 Russian original by A. Iacob, reprint of the original English edition from the series Encyclopaedia of Mathematical Sciences [Dynamical systems III, Encyclopaedia Math. Sci. 3, Springer, Berlin (1993) MR 95d:58043a]. [Google Scholar]
  2. W.E. Aubry, Mather theory and periodic solutions of the forced Burgers equation. Comm. Pure Appl. Math. 52 (1999) 811–828. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkhäuser Boston Inc., Boston, MA, USA (1997). [Google Scholar]
  4. U. Bessi, An analytic counterexample to the KAM theorem. Ergod. Theory Dyn. Syst. 20 (2000) 317–333. [CrossRef] [Google Scholar]
  5. A. Biryuk and D. Gomes, An introduction to the Aubry-Mather theory. São Paulo Journal of Mathematical Sciences (to appear). [Google Scholar]
  6. G. Contreras, R. Iturriaga, G.P. Paternain and M. Paternain, Lagrangian graphs, minimizing measures and Mañé's critical values. Geom. Funct. Anal. 8 (1998) 788–809. [CrossRef] [MathSciNet] [Google Scholar]
  7. L.C. Evans, Partial differential equations. American Mathematical Society, Providence, RI, USA (1998). [Google Scholar]
  8. L.C. Evans and D. Gomes, Effective Hamiltonians and averaging for Hamiltonian dynamics. I. Arch. Ration. Mech. Anal. 157 (2001) 1–33. [Google Scholar]
  9. L.C. Evans and D. Gomes, Effective Hamiltonians and averaging for Hamiltonian dynamics. II. Arch. Ration. Mech. Anal. 161 (2002) 271–305. [CrossRef] [MathSciNet] [Google Scholar]
  10. A. Fathi, Solutions KAM faibles conjuguées et barrières de Peierls. C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 649–652. [Google Scholar]
  11. A. Fathi, Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 1043–1046. [Google Scholar]
  12. A. Fathi, Orbite hétéroclines et ensemble de Peierls. C. R. Acad. Sci. Paris Sér. I Math. 326 (1998) 1213–1216. [Google Scholar]
  13. A. Fathi, Sur la convergence du semi-groupe de Lax-Oleinik. C. R. Acad. Sci. Paris Sér. I Math. 327 (1998) 267–270. [Google Scholar]
  14. A. Fathi and A. Siconolfi, Existence of Formula critical subsolutions of the Hamilton-Jacobi equation. Invent. Math. 155 (2004) 363–388. [CrossRef] [MathSciNet] [Google Scholar]
  15. W.H. Fleming and H.M. Soner, Controlled Markov processes and viscosity solutions. Springer-Verlag, New York (1993). [Google Scholar]
  16. G. Forni, Analytic destruction of invariant circles. Ergod. Theory Dyn. Syst. 14 (1994) 267–298. [Google Scholar]
  17. G. Forni, Construction of invariant measures supported within the gaps of Aubry-Mather sets. Ergod. Theory Dyn. Syst. 16 (1996) 51–86. [Google Scholar]
  18. H. Goldstein, Classical mechanics. Addison-Wesley Publishing Co., Reading, Mass., second edition (1980). [Google Scholar]
  19. D.A. Gomes, Viscosity solutions of Hamilton-Jacobi equations and asymptotics for Hamiltonian systems. Calc. Var. Partial Differential Equations 14 (2002) 345–357. [CrossRef] [MathSciNet] [Google Scholar]
  20. D.A. Gomes, Perturbation theory for viscosity solutions of Hamilton-Jacobi equations and stability of Aubry-Mather sets. SIAM J. Math. Anal. 35 (2003) 135–147 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  21. D.A. Gomes, Duality principles for fully nonlinear elliptic equations, in Trends in partial differential equations of mathematical physics, Progr. Nonlinear Differential Equations Appl. 61, Birkhäuser, Basel (2005) 125–136. [Google Scholar]
  22. D.A. Gomes and A.M. Oberman, Computing the effective Hamiltonian using a variational approach. SIAM J. Contr. Opt. 43 (2004) 792–812 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  23. D.A. Gomes and E. Valdinoci, Lack of integrability via viscosity solution methods. Indiana Univ. Math. J. 53 (2004) 1055–1071. [CrossRef] [MathSciNet] [Google Scholar]
  24. À. Haro, Converse KAM theory for monotone positive symplectomorphisms. Nonlinearity 12 (1999) 1299–1322. [CrossRef] [MathSciNet] [Google Scholar]
  25. A. Knauf, Closed orbits and converse KAM theory. Nonlinearity 3 (1990) 961–973. [CrossRef] [MathSciNet] [Google Scholar]
  26. P.L. Lions and P. Souganidis, Correctors for the homogenization of Hamilton-Jacobi equations in the stationary ergodic setting. Comm. Pure Math. Appl. 56 (2003) 1501–1524. [Google Scholar]
  27. P.L. Lions, G. Papanicolao and S.R.S. Varadhan, Homogeneization of Hamilton-Jacobi equations. Preliminary version (1988). [Google Scholar]
  28. R.S. MacKay, Converse KAM theory, in Singular behavior and nonlinear dynamics, Vol. 1 (Sámos, 1988), World Sci. Publishing, Teaneck, USA (1989) 109–113. [Google Scholar]
  29. R.S. MacKay and I.C. Percival, Converse KAM: theory and practice. Comm. Math. Phys. 98 (1985) 469–512. [CrossRef] [MathSciNet] [Google Scholar]
  30. R.S. MacKay, J.D. Meiss and J. Stark, Converse KAM theory for symplectic twist maps. Nonlinearity 2 (1989) 555–570. [CrossRef] [MathSciNet] [Google Scholar]
  31. R. Mañé, On the minimizing measures of Lagrangian dynamical systems. Nonlinearity 5 (1992) 623–638. [CrossRef] [MathSciNet] [Google Scholar]
  32. R. Mañé, Generic properties and problems of minimizing measures of Lagrangian systems. Nonlinearity 9 (1996) 273–310. [CrossRef] [MathSciNet] [Google Scholar]
  33. J.N. Mather, Minimal action measures for positive-definite Lagrangian systems, in IXth International Congress on Mathematical Physics (Swansea, 1988), Hilger, Bristol (1989) 466–468. [Google Scholar]
  34. J.N. Mather, Minimal measures. Comment. Math. Helv. 64 (1989) 375–394. [Google Scholar]
  35. J.N. Mather, Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z. 207 (1991) 169–207. [CrossRef] [MathSciNet] [Google Scholar]
  36. J. Qian, Two approximations for effective hamiltonians arising from homogenization of Hamilton-Jacobi equations. Preprint (2003). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you