Free Access
Volume 42, Number 6, November-December 2008
Page(s) 1021 - 1045
Published online 25 September 2008
  1. J. Ahn, A vibrating string with dynamic frictionless impact. Appl. Numer. Math. 57 (2007) 861–884. [CrossRef] [MathSciNet] [Google Scholar]
  2. J. Ahn and D.E. Stewart, Euler-Bernoulli beam with dynamic contact: Discretization, convergence, and numerical results. SIAM J. Numer. Anal. 43 (2005) 1455–1480 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  3. J. Ahn and D.E. Stewart, Existence of solutions for a class of impact problems without viscosity. SIAM J. Math. Anal. 38 (2006) 37–63 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  4. J. Ahn and D.E. Stewart, Euler-Bernoulli beam with dynamic contact: Penalty approximation and existence. Numer. Funct. Anal. Optim. 28 (2007) 1003–1026. [MathSciNet] [Google Scholar]
  5. J. Ahn and D.E. Stewart, Dynamic frictionless contact in linear viscoelasticity. IMA J. Numer. Anal. doi:10.1093/imanum/drm029. [Google Scholar]
  6. K.T. Andrews, L. Chapman, J.R. Ferández, M. Fisackerly, M. Shillor, L. Vanerian and T. Vanhouten, A membrane in adhesive contact. SIAM J. Appl. Math. 64 (2003) 152–169. [CrossRef] [MathSciNet] [Google Scholar]
  7. K.T. Andrews, S. Kruk and M. Shillor, Modelling and simulations of a bonded rod. Math. Comput. Model. 42 (2005) 553–572. [CrossRef] [Google Scholar]
  8. J.H. Bramble and X. Zhang, The Analysis of Multigrid Methods, Handbook of Numerical Analysis VII. North-Holland, Amsterdam (2000). [Google Scholar]
  9. D. Candeloro and A. Volčič, Radon-Nikodým theorems, Vol. I. North Holland/Elsevier (2002). [Google Scholar]
  10. O. Chau, J.R. Ferández, M. Shillor and M. Sofonea, Variational and numerical analysis of a quasistatic viscoelastic contact problem with adhesion. J. Comput. Appl. Math. 159 (2003) 431–465. [CrossRef] [MathSciNet] [Google Scholar]
  11. O. Chau, M. Shillor and M. Sofonea, Dynamic frictionless contact with adhesion. Z. Angew. Math. Phys. 55 (2004) 32–47. [CrossRef] [MathSciNet] [Google Scholar]
  12. F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer Series in Operations Research I, II. Springer-Verlag, New York (2003). [Google Scholar]
  13. J.R. Ferández, M. Shillor and M. Sofonea, Analysis and numerical simulations of a dynamic contact problem with adhesion. Math. Comput. Modelling 37 (2003) 1317–1333. [CrossRef] [MathSciNet] [Google Scholar]
  14. M. Frémond, Équilibre des structures qui adhèrent à leur support. C. R. Acad. Sci. Paris Sér. II 295 (1982) 913–916. [Google Scholar]
  15. M. Frémond, Adhérence des solides. J. Méc. Théor. Appl. 6 (1987) 383–407. [Google Scholar]
  16. M. Frémond, Contact with adhesion, in Topics Nonsmooth Mechanics, J.J. Moreau, P.D. Panagiotopoulos and G. Strang Eds. (1988) 157–186 [Google Scholar]
  17. M. Frémond, E. Sacco, N. Point and J.M. Tien, Contact with adhesion, in ESDA Proceedings of the 1996 Engineering Systems Design and Analysis Conference, A. Lagarde and M. Raous Eds., ASME, New York (1996) 151–156. [Google Scholar]
  18. W. Han, K.L. Kuttler, M. Shillor and M. Sofonea, Elastic beam in adhesive contact. Int. J. Solids Structures 39 (2002) 1145–1164. [Google Scholar]
  19. L. Jianu, M. Shillor and M. Sofonea, A viscoelastic frictionless contact problem with adhesion. Appl. Anal. 80 (2001) 233–255. [CrossRef] [MathSciNet] [Google Scholar]
  20. C. Kanzow and H. Kleinmichel, A new class of semismooth Newton-type methods for nonlinear complementarity problems. Comput. Optim. Appl. 11 (1998) 227–251. [CrossRef] [MathSciNet] [Google Scholar]
  21. K. Kuttler, Modern Analysis. CRC Press, Boca Raton, FL, USA (1998). [Google Scholar]
  22. G. Lebeau and M. Schatzman, A wave problem in a half-space with a unilateral contraint at the boundary. J. Diff. Eq. 53 (1984) 309–361. [Google Scholar]
  23. A. Petrov and M. Schatzman, Viscoélastodynamique monodimensionnelle avec conditions de Signorini. C. R. Acad. Sci. Paris Sér. I 334 (2002) 983–988. [Google Scholar]
  24. L.Q. Qi and J. Sun, A nonsmooth version of Newton's method. Math. Program. 58 (1993) 353–367. [Google Scholar]
  25. M. Raous, L. Cangémi and M. Cocu, A consistent model coupling adhesion, friction, and unilateral contact. Comput. Methods Appl. Mech. Engrg. 177 (1999) 383–399. [Google Scholar]
  26. M. Schatzman, A hyperbolic problem of second order with unilateral constraints: the vibrating string with a concave obstacle. J. Math. Anal. Appl. 73 (1980) 138–191. [CrossRef] [MathSciNet] [Google Scholar]
  27. M. Shillor, M. Sofonea and J. Telega, Models and Analysis of Quasistatic Contact, Lect. Notes Phys. 655. Springer, Berlin-Heidelberg-New York (2004). [Google Scholar]
  28. M. Sofonea, W. Han and M. Shillor, Analysis and Approximation of Contact Problems with Adhesion or Damage, Pure and Applied Mathematics 276. Chapman-Hall/CRC Press, New York (2006). [Google Scholar]
  29. D.E. Stewart, Convolution complementarity problems with application to impact problems. IMA J. Appl. Math. 71 (2006) 92–119. [CrossRef] [MathSciNet] [Google Scholar]
  30. D.E. Stewart, Differentiating complementarity problems and fractional index convolution complementarity problems. Houston J. Math. 33 (2007) 301–322. [MathSciNet] [Google Scholar]
  31. D.E. Stewart, Energy balance for viscoelastic bodies in frictionless contact. (Submitted). [Google Scholar]
  32. M.E. Taylor, Partial Differential Equations 1, Applied Mathematical Sciences 115. Springer-Verlag, New York (1996). [Google Scholar]
  33. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators. North Holland, Amsterdam, New York (1978). [Google Scholar]
  34. J. Wloka, Partial Differential Equations. Cambridge University Press (1987). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you