Free Access
Issue
ESAIM: M2AN
Volume 42, Number 6, November-December 2008
Page(s) 903 - 924
DOI https://doi.org/10.1051/m2an:2008032
Published online 12 August 2008
  1. T. Apel, Anisotropic finite elements: Local estimates and applications, Advances in Numerical Mathematics. Teubner, Stuttgart (1999). [Google Scholar]
  2. R. Becker, An adaptive finite element method for the incompressible Navier-Stokes equation on time-dependent domains. Ph.D. Dissertation, SFB-359 Preprint 95-44, Universität Heidelberg, Germany (1995). [Google Scholar]
  3. R. Becker and M. Braack, A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38 (2001) 173–199. [CrossRef] [MathSciNet] [Google Scholar]
  4. R. Becker and M. Braack, A two-level stabilization scheme for the Navier-Stokes equations, in Numerical Mathematics and Advanced Applications, ENUMATH 2003, E.A.M. Feistauer Ed., Springer (2004) 123–130. [Google Scholar]
  5. R. Becker, M. Braack and B. Vexler, Numerical parameter estimaton for chemical models in multidimensional reactive flows. Combust. Theory Model. 8 (2004) 661–682. [CrossRef] [MathSciNet] [Google Scholar]
  6. R. Becker, M. Braack and B. Vexler, Parameter identification for chemical models in combustion problems. Appl. Numer. Math. 54 (2005) 519–536. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Braack, Anisotropic H1-stable projections on quadrilateral meshes, in Numerical Mathematics and Advanced Applications, Enumath Proc. 2005, B. de Castro Ed., Springer (2006) 495–503. [Google Scholar]
  8. M. Braack and E. Burman, Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM J. Numer. Anal. 43 (2006) 2544–2566. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Braack and T. Richter, Local projection stabilization for the Stokes system on anisotropic quadrilateral meshes, in Numerical Mathematics and Advanced Applications, Enumath Proc. 2005, B. de Castro Ed., Springer (2006) 770–778. [Google Scholar]
  10. M. Braack and T. Richter, Solutions of 3D Navier-Stokes benchmark problems with adaptive finite elements. Comput. Fluids 35 (2006) 372–392. [CrossRef] [Google Scholar]
  11. M. Braack and T. Richter, Stabilized finite elements for 3D reactive flow. Int. J. Numer. Methods Fluids 51 (2006) 981–999. [CrossRef] [Google Scholar]
  12. M. Braack, E. Burman, V. John and G. Lube, Stabilized finite element methods for the generalized Oseen problem. Comput. Methods Appl. Mech. Engrg. 196 (2007) 853–866. [CrossRef] [MathSciNet] [Google Scholar]
  13. A. Brooks and T. Hughes, Streamline upwind Petrov-Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 32 (1982) 199–259. [CrossRef] [MathSciNet] [Google Scholar]
  14. E. Burman, M. Fernandez and P. Hansbo, Edge stabilization for the incompressible Navier-Stokes equations: a continuous interior penalty finite element method. SIAM J. Numer. Anal. 44 (2006) 1248–1274. [CrossRef] [MathSciNet] [Google Scholar]
  15. P. Ciarlet, Finite Element Methods for Elliptic Problems. North-Holland, Amsterdam (1978). [Google Scholar]
  16. R. Codina, Stabilization of incompressibility and convection through orthogonal subscales in finite element methods. Comput. Methods Appl. Mech. Engrg. 190 (2000) 1579–1599. [CrossRef] [MathSciNet] [Google Scholar]
  17. R. Codina and O. Soto, Approximation of the incompressible Navier-Stokes equations using orthogonal subscale stabilization and pressure segregation on anisotropic finite element meshes. Comput. Methods Appl. Mech. Engrg. 193 (2004) 1403–1419. [CrossRef] [MathSciNet] [Google Scholar]
  18. L. Formaggia and S. Perotto, Anisotropic error estimates for elliptic problems. Numer. Math. 94 (2003) 67–92. [CrossRef] [MathSciNet] [Google Scholar]
  19. L. Formaggia, S. Micheletti and S. Perotto, Anisotropic mesh adaptation in computational fluid dynamics: Application to the advection-diffusion-reaction and the Stokes problems. Appl. Numer. Math. 51 (2004) 511–533. [CrossRef] [MathSciNet] [Google Scholar]
  20. L. Franca and S. Frey, Stabilized finite element methods: II. The incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 99 (1992) 209–233. [CrossRef] [MathSciNet] [Google Scholar]
  21. J.-L. Guermond, Stabilization of Galerkin approximations of transport equations by subgrid modeling. ESAIM: M2AN 33 (1999) 1293–1316. [CrossRef] [EDP Sciences] [Google Scholar]
  22. P. Hansbo and A. Szepessy, A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 84 (1990) 175–192. [CrossRef] [MathSciNet] [Google Scholar]
  23. T. Hughes, L. Franca and M. Balestra, A new finite element formulation for computational fluid dynamics: V. Circumvent the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation for the Stokes problem accommodating equal order interpolation. Comput. Methods Appl. Mech. Engrg. 59 (1986) 89–99. [Google Scholar]
  24. V. John and S. Kaya, A finite element variational multiscale method for the Navier-Stokes equations. SIAM J. Sci. Comp. 26 (2005) 1485–1503. [CrossRef] [Google Scholar]
  25. V. John, S. Kaya and W. Layton, A two-level variational multiscale method for convection-dominated convection-diffusion equations. Comput. Methods Appl. Mech. Engrg. 26 (2005) 4594–4603. [Google Scholar]
  26. K. Kunisch and B. Vexler, Optimal vortex reduction for instationary flows based on translation invariant cost functionals. SIAM J. Contr. Opt. 46 (2007) 1368–1397. [CrossRef] [MathSciNet] [Google Scholar]
  27. T. Linss, Anisotropic meshes and streamline-diffusion stabilization for convection-diffusion problems. Comm. Numer. Methods Engrg. 21 (2005) 515–525. [CrossRef] [MathSciNet] [Google Scholar]
  28. G. Lube and T. Apel, Anisotropic mesh refinement in stabilized Galerkin methods. Numer. Math. 74 (1996) 261–282. [CrossRef] [MathSciNet] [Google Scholar]
  29. G. Lube and G. Rapin, Residual-based stabilized higher-order FEM for a generalized Oseen problem. Math. Models Methods Appl. Sci. 16 (2006) 949–966. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  30. G. Lube, T. Knopp and R. Gritzki, Stabilized FEM with anisotropic mesh refinement for the Oseen problem, in Proceedings ENUMATH 2005, Springer (2006) 799–806. [Google Scholar]
  31. G. Matthies, P. Skrzypacz and L. Tobiska, A unified convergence analysis for local projection stabilisations applied ro the Oseen problem. ESAIM: M2AN 41 (2007) 713–742. [CrossRef] [EDP Sciences] [Google Scholar]
  32. S. Micheletti, S. Perotto and M. Picasso, Stabilized finite elements on anisotropic meshes: A priori estimate for the advection-diffusion and the Stokes problem. SIAM J. Numer. Anal. 41 (2003) 1131–1162. [CrossRef] [MathSciNet] [Google Scholar]
  33. H. Paillere, P. Le Quéré, C. Weisman, J. Vierendeels, E. Dick, M. Braack, F. Dabbene, A. Beccantini, E. Studer, T. Kloczko, C. Corre, V. Heuveline, M. Darbandi and S. Hosseinizadeh, Modelling of natural convection flows with large temperature differences: a benchmark problem for low Mach number solvers. Part 2. Contributions to the June 2004 conference. ESAIM: M2AN 39 (2005) 617–621. [CrossRef] [EDP Sciences] [Google Scholar]
  34. L. Tobiska and G. Lube, A modified streamline diffusion method for solving the stationary Navier-Stokes equations. Numer. Math. 59 (1991) 13–29. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you