Free Access
Volume 43, Number 2, March-April 2009
Page(s) 333 - 351
Published online 18 December 2008
  1. R. Abgrall and S. Karni, A relaxation scheme for the two layer shallow water system, in Proceedings of the 11th International Conference on Hyperbolic Problems (Lyon, 2006), Springer (2008) 135–144.
  2. E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25 (2004) 2050–2065 [CrossRef] [MathSciNet]
  3. J. Balbás and E. Tadmor, Nonoscillatory central schemes for one- and two-dimensional magnetohydrodynamics equations. ii: High-order semidiscrete schemes. SIAM J. Sci. Comput. 28 (2006) 533–560.
  4. A. Bermudez and M.E. Vazquez, Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids 23 (1994) 1049–1071. [CrossRef] [MathSciNet]
  5. F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. Birkhauser, Basel, Switzerland, Berlin (2004).
  6. M.J. Castro, J. Macias and C. Pares, A Q-scheme for a class of systems of coupled conservation laws with source terms. Application to a two-layer 1-d shallow water system. ESAIM: M2AN 35 (2001) 107–127.
  7. M.J. Castro, J.A. García-Rodríguez, J.M. González-Vida, J. Macías, C. Parés and M.E. Vázquez-Cendón, Numerical simulation of two-layer shallow water flows through channels with irregular geometry. J. Comput. Phys. 195 (2004) 202–235. [CrossRef] [MathSciNet]
  8. N. Črnjarić-Žic, S. Vuković and L. Sopta, Balanced finite volume WENO and central WENO schemes for the shallow water and the open-channel flow equations. J. Comput. Phys. 200 (2004) 512–548. [CrossRef] [MathSciNet]
  9. S. Gottlieb, C.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods. SIAM Rev. 43 (2001) 89–112. [NASA ADS] [CrossRef] [MathSciNet]
  10. J.M. Greenberg and A.Y. Le Roux, Well-balanced scheme for the processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33 (1996) 1–16. [CrossRef] [MathSciNet]
  11. A. Harten, High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49 (1983) 357–393. [NASA ADS] [CrossRef] [MathSciNet]
  12. S. Jin, A steady-state capturing method for hyperbolic systems with geometrical source terms. ESAIM: M2AN 35 (2001) 631–645. [CrossRef] [EDP Sciences]
  13. A. Kurganov and D. Levy, Central-upwind schemes for the Saint-Venant system. ESAIM: M2AN 36 (2002) 397–425. [CrossRef] [EDP Sciences]
  14. A. Kurganov and G. Petrova, A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun. Math. Sci. 5 (2007) 133–160. [MathSciNet]
  15. A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160 (2000) 241–282. [NASA ADS] [CrossRef] [MathSciNet]
  16. A. Kurganov, S. Noelle and G. Petrova, Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 23 (2001) 707–740. [CrossRef] [MathSciNet]
  17. R.J. LeVeque, Balancing source terms and flux gradients in high resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comp. Phys. 146 (1998) 346–365. [NASA ADS] [CrossRef] [MathSciNet]
  18. H. Nessyahu and E. Tadmor, Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87 (1990) 408–463. [NASA ADS] [CrossRef] [MathSciNet]
  19. S. Noelle, N. Pankratz, G. Puppo and J.R. Natvig, Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. J. Comput. Phys. 213 (2006) 474–499. [CrossRef] [MathSciNet]
  20. S. Noelle, Y. Xing, and C.-W. Shu, High-order well-balanced finite volume WENO schemes for shallow water equation with moving water. J. Comput. Phys. 226 (2007) 29–58. [CrossRef] [MathSciNet]
  21. C. Pares and M. Castro, On the well-balance property of Roe's method for nonconservative hyperbolic systems. Applications to shallow-water systems. ESAIM: M2AN 38 (2004) 821–852.
  22. B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38 (2001) 201–231. [CrossRef] [MathSciNet]
  23. G. Russo, Central schemes for balance laws, in Hyperbolic problems: theory, numerics, applications, Vols. I, II (Magdeburg, 2000), Internat. Ser. Numer. Math. 140, Birkhäuser, Basel (2001) 821–829.
  24. C.-W. Shu and S. Osher, Efficient implementation of essentially nonoscillatory shock-capturing schemes. II. Comput. Phys. 83 (1989) 32–78.
  25. W.C. Thacker, Some exact solutions to the nonlinear shallow-water wave equations. Journal of Fluid Mechanics Digital Archive 107 (1981) 499–508.
  26. B. van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method. J. Comput. Phys. 135 (1997) 229–248.
  27. M.E. Vázquez-Cendón, Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. J. Comput. Phys. 148 (1999) 497–526. [CrossRef] [MathSciNet]
  28. S. Vuković and L. Sopta, High-order ENO and WENO schemes with flux gradient and source term balancing, in Applied mathematics and scientific computing (Dubrovnik, 2001), Kluwer/Plenum, New York (2003) 333–346.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you