Free Access
Issue
ESAIM: M2AN
Volume 43, Number 2, March-April 2009
Page(s) 297 - 331
DOI https://doi.org/10.1051/m2an/2009002
Published online 07 February 2009
  1. M. Ainsworth, Discrete dispersion relation for hp-version finite element approximation at high wave number. SIAM J. Numer. Anal. 42 (2004) 563–575. [Google Scholar]
  2. D. Arnold, F. Brezzi, B. Cockburn and L. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749–1779. [CrossRef] [MathSciNet] [Google Scholar]
  3. I. Babuška and J. Melenk, The partition of unity method. Int. J. Numer. Methods Eng. 40 (1997) 727–758. [CrossRef] [MathSciNet] [Google Scholar]
  4. I. Babuška and S. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation? SIAM Review 42 (2000) 451–484. [CrossRef] [MathSciNet] [Google Scholar]
  5. L. Banjai and S. Sauter, A refined Galerkin error and stability analysis for highly indefinite variational problems. Report 03-06, Institut für Mathematik, Universität Zürich, Zürich, Switzerland (2006). [Google Scholar]
  6. S. Brenner and R. Scott, Mathematical theory of finite element methods, Texts in Applied Mathematics. Springer-Verlag, New York, 2nd edn. (2002). [Google Scholar]
  7. A. Buffa and P. Monk, Error estimates for the ultra weak variational formulation of the Helmholtz equation. ESAIM: M2AN 42 (2008) 925–940. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  8. P. Castillo, B. Cockburn, I. Perugia and D. Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38 (2000) 1676–1706. [CrossRef] [MathSciNet] [Google Scholar]
  9. O. Cessenat, Application d'une nouvelle formulation variationnelle aux équations d'ondes harmoniques. Ph.D. Thesis, Université Parix IX Dauphine, Paris, France (1996). [Google Scholar]
  10. O. Cessenat and B. Després, Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz equation. SIAM J. Numer. Anal. 35 (1998) 255–299. [CrossRef] [MathSciNet] [Google Scholar]
  11. O. Cessenat and B. Després, Using plane waves as base functions for solving time harmonic equations with the ultra weak variational formulation. J. Comp. Acoust. 11 (2003) 227–238. [CrossRef] [Google Scholar]
  12. P. Cummings and X.-B. Feng, Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations. Math. Models Methods Appl. Sci. 16 (2006) 139–160. [CrossRef] [MathSciNet] [Google Scholar]
  13. B. Despres, Sur une formulation variationnelle de type ultra-faible. C. R. Acad. Sci. Paris, Ser. I 318 (1994) 939–944. [Google Scholar]
  14. C. Farhat, I. Harari and U. Hetmaniuk, A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime. Comput. Methods Appl. Mech. Eng. 192 (2003) 1389–1419. [CrossRef] [Google Scholar]
  15. C. Farhat, R. Tezaur and P. Weidemann-Goiran, Higher-order extensions of a discontinuous Galerkin method for mid-frequency Helmholtz problems. Int. J. Numer. Meth. Engr. 61 (2004) 1938–1956. [CrossRef] [Google Scholar]
  16. G. Gabard, Discontinuous Galerkin methods with plane waves for the displacement-based acoustic equation. Int. J. Numer. Meth. Engr. 66 (2006) 549–569. [CrossRef] [Google Scholar]
  17. G. Gabard, Discontinuous Galerkin methods with plane waves for time-harmonic problems. J. Comp. Phys. 225 (2007) 1961–1984. [CrossRef] [MathSciNet] [Google Scholar]
  18. C. Gittelson, R. Hiptmair and I. Perugia, Plane wave discontinuous Galerkin methods. Preprint NI07088-HOP, Isaac Newton Institute Cambride, Cambrid, UK (2007). Available at http://www.newton.cam.ac.uk/preprints/NI07088.pdf. [Google Scholar]
  19. U. Hetmaniuk, Stability estimates for a class of Helmholtz problems. Communications in Mathematical Sciences 5 (2007) 665–678. [MathSciNet] [Google Scholar]
  20. R. Hiptmair and P. Ledger, A quadrilateral edge element scheme with minimum dispersion. Report 2003-17, SAM, ETH Zürich, Zürich, Switzerland (2003). [Google Scholar]
  21. T. Huttunen and P. Monk, The use of plane waves to approximate wave propagation in anisotropic media. J. Comput. Math. 25 (2007) 350–367. [MathSciNet] [Google Scholar]
  22. T. Huttunen, P. Monk and J. Kaipio, Computational aspects of the ultra-weak variational formulation. J. Comp. Phys. 182 (2002) 27–46. [CrossRef] [MathSciNet] [Google Scholar]
  23. T. Huttunen, M. Malinen and P. Monk, Solving Maxwell's equations using the ultra weak variational formulation. J. Comp. Phys. 223 (2007) 731–758. [CrossRef] [MathSciNet] [Google Scholar]
  24. F. Ihlenburg, Finite Element Analysis of Acoustic Scattering, Applied Mathematical Sciences 132. Springer-Verlag, New York (1998). [Google Scholar]
  25. O. Laghrouche, P. Bettes and R. Astley, Modelling of short wave diffraction problems using approximating systems of plane waves. Int. J. Numer. Meth. Engr. 54 (2002) 1501–1533. [CrossRef] [Google Scholar]
  26. J. Melenk, On Generalized Finite Element Methods. Ph.D. Thesis, University of Maryland, USA (1995). [Google Scholar]
  27. P. Monk and D. Wang, A least squares method for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 175 (1999) 121–136. [CrossRef] [MathSciNet] [Google Scholar]
  28. E. Perrey-Debain, O. Laghrouche and P. Bettess, Plane-wave basis finite elements and boundary elements for three-dimensional wave scattering. Phil. Trans. R. Soc. London A 362 (2004) 561–577. [CrossRef] [Google Scholar]
  29. H. Riou, P. Ladevéze and B. Sourcis, The multiscale VTCR approach applied to acoustics problems. J. Comp. Acoust. (2008) (to appear). [Google Scholar]
  30. A. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comp. 28 (1974) 959–962. [CrossRef] [MathSciNet] [Google Scholar]
  31. C. Schwab, p- and hp-Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics, Numerical Mathematics and Scientific Computation. Clarendon Press, Oxford (1998). [Google Scholar]
  32. M. Stojek, Least-squares Trefftz-type elements for the Helmholtz equation. Int. J. Numer. Meth. Engr. 41 (1998) 831–849. [CrossRef] [Google Scholar]
  33. R. Tezaur and C. Farhat, Three-dimensional discontinuous Galerkin elements with plane waves and lagrange multipliers for the solution of mid-frequency Helmholtz problems. Int. J. Numer. Meth. Engr. 66 (2006) 796–815. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you