Free Access
Volume 43, Number 3, May-June 2009
Page(s) 487 - 506
Published online 08 April 2009
  1. H.-B. An, On convergence of the additive Schwarz preconditioned inexact Newton method. SIAM J. Numer. Anal. 43 (2005) 1850–1871. [CrossRef] [MathSciNet] [Google Scholar]
  2. A. Bermúdez, R. Rodríguez and D. Santamarina, Finite element approximation of a displacement formulation for time-domain elastoacoustic vibrations. J. Comput. Appl. Math. 152 (2003) 17–34. [CrossRef] [MathSciNet] [Google Scholar]
  3. C. Bernardi, Y. Maday and A.T. Patera, Domain decomposition by the mortar element method, in Asymptotic and numerical methods for partial differential equations with critical parameters (Beaune, 1992), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 384, Kluwer Acad. Publ., Dordrecht (1993) 269–286. [Google Scholar]
  4. C. Bernardi, Y. Maday and A.T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Nonlinear partial differential equations and their applications, Collège de France Seminar, Vol. XI (Paris, 1989–1991), Pitman Res. Notes Math. Ser. 299, Longman Sci. Tech., Harlow (1994) 13–51. [Google Scholar]
  5. X.-C. Cai and D.E. Keyes, Nonlinearly preconditioned inexact Newton algorithms. SIAM J. Sci. Comput. 24 (2002) 183–200. [CrossRef] [MathSciNet] [Google Scholar]
  6. P.G. Ciarlet, Mathematical elasticity, Vol. I: Three-dimensional elasticity, Studies in Mathematics and its Applications 20. North-Holland Publishing Co., Amsterdam (1988). [Google Scholar]
  7. M. Dryja and W. Hackbusch, On the nonlinear domain decomposition method. BIT 37 (1997) 296–311. [CrossRef] [MathSciNet] [Google Scholar]
  8. B. Flemisch, M. Kaltenbacher and B.I. Wohlmuth, Elasto-acoustic and acoustic-acoustic coupling on non-matching grids. Int. J. Numer. Meth. Engng. 67 (2006) 1791–1810. [CrossRef] [Google Scholar]
  9. M.F. Hammilton and D.T. Blackstock, Nonlinear Acoustics. Academic Press (1998). [Google Scholar]
  10. T. Hughes, The Finite Element Method. Prentice-Hall, New Jersey (1987). [Google Scholar]
  11. M. Kaltenbacher. Numerical Simulation of Mechatronic Sensors and Actuators. Springer, Berlin-Heidelberg-New York (2007). [Google Scholar]
  12. D. Kuhl and M.A. Crisfield, Energy-conserving and decaying algorithms in non-linear structural dynamics. Int. J. Numer. Meth. Engng. 45 (1999) 569–599. [CrossRef] [Google Scholar]
  13. V.I. Kuznetsov, Equations of nonlinear acoustics. Soviet Phys.-Acoust. 16 (1971) 467–470. [Google Scholar]
  14. N.M. Newmark, A method of computation for structural dynamics. J. Engng. Mech. Div., Proc. ASCE 85 (EM3) (1959) 67–94. [Google Scholar]
  15. A. Quarteroni and A. Valli, Domain decomposition methods for partial differential equations, Numerical Mathematics and Scientific Computation. Oxford University Press, New York (1999). [Google Scholar]
  16. A.-M. Sändig, Nichtlineare Funktionalanalysis mit Anwendungen auf partielle Differentialgleichungen. Vorlesung im Sommersemester 2006, IANS preprint 2006/012, Technical report, University of Stuttgart, Germany (2006). [Google Scholar]
  17. B.F. Smith, P.E. Bjørstad and W.D. Gropp, Domain decomposition, Parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, Cambridge (1996). [Google Scholar]
  18. A. Toselli and O. Widlund, Domain decomposition methods – algorithms and theory, Springer Series in Computational Mathematics 34. Springer-Verlag, Berlin (2005). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you