Free Access
Volume 43, Number 4, July-August 2009
Special issue on Numerical ODEs today
Page(s) 785 - 804
Published online 08 July 2009
  1. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions. National Bureau of Standards, Washington, DC, (1964). [Google Scholar]
  2. D. Cohen, T. Jahnke, K. Lorenz and C. Lubich, Numerical integrators for highly oscillatory Hamiltonian systems: a review, in Analysis, Modeling and Simulation of Multiscale Problems, A. Mielke Ed., Springer-Verlag (2006) 553–576. [Google Scholar]
  3. E. Dautbegovic, M. Condon and C. Brennan, An efficient nonlinear circuit simulation technique. IEEE Trans. Microwave Theory Tech. 53 (2005) 548–555. [CrossRef] [Google Scholar]
  4. P.J. Davis and P. Rabinowitz, Methods of Numerical Integration. Second Edition, Academic Press, Orlando, USA (1984). [Google Scholar]
  5. V. Grimm and M. Hochbruck, Error analysis of exponential integrators for oscillatory second-order differential equations. J. Phys. A: Math. Gen. 39 (2006) 5495–5507. [CrossRef] [MathSciNet] [Google Scholar]
  6. S. Haykin, Communications Systems. Fourth Edition, John Wiley, New York, USA (2001). [Google Scholar]
  7. D. Huybrechs and S. Vandewalle, On the evaluation of highly oscillatory integrals by analytic continuation. SIAM J. Numer. Anal. 44 (2006) 1026–1048. [CrossRef] [MathSciNet] [Google Scholar]
  8. A. Iserles, On the global error of discretization methods for highly-oscillatory ordinary differential equations. BIT 42 (2002a) 561–599. [CrossRef] [MathSciNet] [Google Scholar]
  9. A. Iserles, Think globally, act locally: solving highly-oscillatory ordinary differential equations. Appl. Num. Anal. 43 (2002b) 145–160. [Google Scholar]
  10. A. Iserles and S.P. Nørsett, On quadrature methods for highly oscillatory integrals and their implementation. BIT 44 (2004) 755–772. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Iserles and S.P. Nørsett, Efficient quadrature of highly oscillatory integrals using derivatives. Proc. Royal Soc. A 461 (2005) 1383–1399. [CrossRef] [Google Scholar]
  12. A. Iserles and S.P. Nørsett, From high oscillation to rapid approximation I: Modified Fourier expansions. IMA J. Num. Anal. 28 (2008) 862–887. [CrossRef] [Google Scholar]
  13. M.C. Jeruchim, P. Balaban and K.S. Shanmugan, Simulation of Communication Systems, Modeling, Methodology and Techniques. Second Edition, Kluwer Academic/Plenum Publishers, New York, USA (2000). [Google Scholar]
  14. M. Khanamirian, Quadrature methods for systems of highly oscillatory ODEs. Part I. BIT 48 (2008) 743–761. [CrossRef] [MathSciNet] [Google Scholar]
  15. C.A. Micchelli and T.J. Rivlin, Quadrature formulæ and Hermite-Birkhoff interpolation. Adv. Maths 11 (1973) 93–112. [CrossRef] [Google Scholar]
  16. S. Olver, Moment-free numerical integration of highly oscillatory functions. IMA J. Num. Anal. 26 (2006) 213–227. [CrossRef] [Google Scholar]
  17. R. Pulch, Multi-time scale differential equations for simulating frequency modulated signals. Appl. Numer. Math. 53 (2005) 421–436. [CrossRef] [MathSciNet] [Google Scholar]
  18. J. Roychowdhury, Analysing circuits with widely separated time scales using numerical PDE methods. IEEE Trans. Circuits Sys. I, Fund. Theory Appl. 48 (2001) 578–594. [Google Scholar]
  19. C.J. Weisman, The Essential Guide to RF and Wireless. Second Edition, Prentice-Hall, Englewood Cliffs, USA (2002). [Google Scholar]
  20. R. Wong, Asymptotic Approximations of Integrals. SIAM, Philadelphia (2001). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you