Free Access
Issue
ESAIM: M2AN
Volume 43, Number 5, September-October 2009
Page(s) 889 - 927
DOI https://doi.org/10.1051/m2an/2009031
Published online 01 August 2009
  1. F. Archambeau, N. Méchitoua and M. Sakiz, Code saturne: A finite volume code for turbulent flows. International Journal of Finite Volumes 1 (2004), http://www.latp.univ-mrs.fr/IJFV/. [Google Scholar]
  2. M. Bern, D. Eppstein and J. Gilbert, Provably good mesh generation. J. Comput. System Sci. 48 (1994) 384–409. [CrossRef] [MathSciNet] [Google Scholar]
  3. F. Boyer and P. Fabrie, Eléments d'analyse pour l'étude de quelques modèles d'écoulements de fluides visqueux incompressibles, Mathématiques et Applications 52. Springer-Verlag (2006). [Google Scholar]
  4. F. Brezzi and M. Fortin, A minimal stabilisation procedure for mixed finite element methods. Numer. Math. 89 (2001) 457–491. [CrossRef] [MathSciNet] [Google Scholar]
  5. E. Chénier, R. Eymard and O. Touazi, Numerical results using a colocated finite-volume scheme on unstructured grids for incompressible fluid flows. Numer. Heat Transf. Part B: Fundam. 49 (2006) 259–276. [CrossRef] [Google Scholar]
  6. E. Chénier, R. Eymard, R. Herbin and O. Touazi, Collocated finite volume schemes for the simulation of natural convective flows on unstructured meshes. Int. J. Num. Methods Fluids 56 (2008) 2045–2068. [CrossRef] [Google Scholar]
  7. Y. Coudière, T. Gallouët and R. Herbin, Discrete Sobolev inequalities and LP error estimates for finite volume solutions of convection diffusion equations. ESAIM: M2AN 35 (2001) 767–778. [CrossRef] [EDP Sciences] [Google Scholar]
  8. K. Deimling, Nonlinear functional analysis. Springer-Verlag (1985). [Google Scholar]
  9. R. Eymard and T. Gallouët, H-convergence and numerical schemes for elliptic equations. SIAM J. Numer. Anal. 41 (2003) 539–562. [CrossRef] [MathSciNet] [Google Scholar]
  10. R. Eymard and R. Herbin, A new colocated finite volume scheme for the incompressible Navier-Stokes equations on general non-matching grids. C. R. Acad. Sci., Sér. I Math. 344 (2007) 659–662. [Google Scholar]
  11. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, Handbook of Numerical Analysis VII. North Holland (2000) 713–1020. [Google Scholar]
  12. R. Eymard, T. Gallouët and R. Herbin, A finite volume scheme for anisotropic diffusion problems. C. R. Acad. Sci., Sér. I Math. 339 (2004) 299–302. [Google Scholar]
  13. R. Eymard, R. Herbin and J.C. Latché, On a stabilized colocated finite volume scheme for the Stokes problem. ESAIM: M2AN 40 (2006) 501–528. [CrossRef] [EDP Sciences] [Google Scholar]
  14. R. Eymard, T. Gallouët, R. Herbin and J.-C. Latché, Analysis tools for finite volume schemes. Acta Mathematica Universitatis Comenianae 76 (2007) 111–136. [MathSciNet] [Google Scholar]
  15. R. Eymard, R. Herbin and J.C. Latché, Convergence analysis of a colocated finite volume scheme for the incompressible Navier-Stokes equations on general 2D or 3D meshes. SIAM J. Numer. Anal. 45 (2007) 1–36. [CrossRef] [MathSciNet] [Google Scholar]
  16. R. Eymard, R. Herbin, J.C. Latché and B. Piar, On the stability of colocated clustered finite volume simplicial discretizations for the 2D Stokes problem. Calcolo 44 (2007) 219–234. [CrossRef] [MathSciNet] [Google Scholar]
  17. L.P. Franca and R. Stenberg, Error analysis of some Galerkin Least Squares methods for the elasticity equations. SIAM J. Numer. Anal. 28 (1991) 1680–1697. [CrossRef] [MathSciNet] [Google Scholar]
  18. T. Gallouët, R. Herbin and M.H. Vignal, Error estimates for the approximate finite volume solution of convection diffusion equations with general boundary conditions. SIAM J. Numer. Anal. 37 (2000) 1935–1972. [CrossRef] [MathSciNet] [Google Scholar]
  19. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations – Theory and Algorithms, Springer Series in Computational Mathematics 5. Springer-Verlag (1986). [Google Scholar]
  20. J. Nečas, Équations aux dérivées partielles. Presses de l'Université de Montréal (1965). [Google Scholar]
  21. L.E. Payne and H.F. Weinberger, An optimal Poincaré-inequality for convex domains. Arch. Rational Mech. Anal. 5 (1960) 286–292. [CrossRef] [MathSciNet] [Google Scholar]
  22. B. Piar, PELICANS : Un outil d'implémentation de solveurs d'équations aux dérivées partielles. Note Technique 2004/33, IRSN/DPAM/SEMIC (2004). [Google Scholar]
  23. R. Temam, Navier-Stokes Equations, Studies in mathematics and its applications. North-Holland (1977). [Google Scholar]
  24. R. Verfürth, Error estimates for some quasi-interpolation operators. ESAIM: M2AN 33 (1999) 695–713. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you