Free Access
Volume 43, Number 5, September-October 2009
Page(s) 929 - 955
Published online 12 June 2009
  1. P. Amorim, M. Ben-Artzi and P.G. LeFloch, Hyperbolic conservation laws on manifolds: total variation estimates and the finite volume method. Methods Appl. Anal. 12 (2005) 291–323. [MathSciNet] [Google Scholar]
  2. M. Ben-Artzi and P.G. LeFloch, Well-posedness theory for geometry compatible hyperbolic conservation laws on manifolds. Ann. H. Poincaré Anal. Non Linéaire 24 (2007) 989–1008. [CrossRef] [Google Scholar]
  3. D.A. Calhoun, C. Helzel and R.J. LeVeque, Logically rectangular grids and finite volume methods for PDEs in circular and spherical domains. SIAM Rev. 50 (2008) 723–752. Available at [CrossRef] [Google Scholar]
  4. J.Y.-K. Cho and L.M. Polvani, The emergence of jets and vortices in freely evolving, shallow-water turbulence on a sphere. Phys. Fluids 8 (1996) 1531–1552. [NASA ADS] [CrossRef] [Google Scholar]
  5. M. Dikpati and P.A. Gilman, A “shallow-water” theory for the sun's active longitudes. Astrophys. J. Lett. 635 (2005) L193–L196. [Google Scholar]
  6. M.P. do Carmo, Riemannian geometry, Mathematics: Theory & Applications. Birkhäuser Boston Inc., Boston, USA (1992). [Google Scholar]
  7. R. Eymard, T. Gallouët, M. Ghilani and R. Herbin, Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal. 18 (1998) 563–594. [CrossRef] [MathSciNet] [Google Scholar]
  8. J.A. Font, Numerical hydrodynamics and magnetohydrodynamics in general relativity. Living Rev. Relativ. 11 (2008) 7. URL (cited on June 8, 2009): [Google Scholar]
  9. P.A. Gilman, Magnetohydrodynamic “shallow-water” equations for the solar tachocline. Astrophys. J. Lett. 544 (2000) L79–L82. [Google Scholar]
  10. F.X. Giraldo, Lagrange-Galerkin methods on spherical geodesic grids. J. Comput. Phys. 136 (1997) 197–213. [CrossRef] [MathSciNet] [Google Scholar]
  11. F.X. Giraldo, High-order triangle-based discontinuous Galerkin methods for hyperbolic equations on a rotating sphere. J. Comput. Phys. 214 (2006) 447–465. [CrossRef] [MathSciNet] [Google Scholar]
  12. R. Iacono, M.V. Struglia and C. Ronchi, Spontaneous formation of equatorial jets in freely decaying shallow water turbulence. Phys. Fluids 11 (1999) 1272–1274. [CrossRef] [Google Scholar]
  13. J. Jost, Riemannian Geometry and Geometric Analysis. Springer Universitext, Springer (2002). [Google Scholar]
  14. D. Lanser, J.G. Blom and J.G. Verwer, Spatial discretization of the shallow water equations in spherical geometry using osher's scheme. J. Comput. Phys. 165 (2000) 542–565. [CrossRef] [Google Scholar]
  15. J.M. Martíand E. Müller, Numerical hydrodynamics in special relativity. Living Rev. Relativ. 6 (2003) 7. URL (cited on June 8, 2009): [Google Scholar]
  16. M.J. Miranda, D. Pallara, F. Paronetto and M. Preunkert, Heat semigroup and functions of bounded variation on Riemannian manifolds. J. reine angew. Math. 613 (2007) 99–119. [Google Scholar]
  17. M. Rancic, R.J. Purser and F. Mesinger, A global shallow-water model using an expanded spherical cube: Gnomonic versus conformal coordinates. Q. J. R. Meteorolog. Soc. 122 (1996) 959–982. [Google Scholar]
  18. C. Ronchi, R. Iacono and P.S. Paolucci, The cubed sphere: A new method for the solution of partial differential equations in spherical geometry. J. Comput. Phys. 124 (1996) 93–114. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  19. J.A. Rossmanith, A wave propagation algorithm for hyperbolic systems on the sphere. J. Comput. Phys. 213 (2006) 629–658. [CrossRef] [MathSciNet] [Google Scholar]
  20. J.A. Rossmanith, D.S. Bale and R.J. LeVeque, A wave propagation algorithm for hyperbolic systems on curved manifolds. J. Comput. Phys. 199 (2004) 631–662. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  21. D.A. Schecter, J.F. Boyd and P.A. Gilman, “Shallow-water” magnetohydrodynamic waves in the solar tachocline. Astrophys. J. Lett. 551 (2001) L185–L188. [Google Scholar]
  22. Y. Tsukahara, N. Nakaso, H. Cho and K. Yamanaka, Observation of diffraction-free propagation of surface acoustic waves around a homogeneous isotropic solid sphere. Appl. Phys. Lett. 77 (2000) 2926–2928. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you