Free Access
Volume 43, Number 6, November-December 2009
Page(s) 1157 - 1183
Published online 01 August 2009
  1. T. Barth and M. Ohlberger, Finite volume methods: foundation and analysis, in Encyclopedia of Computational Mechanics, E. Stein, R. de Borst and T.J.R. Hughes Eds., John Wiley & Sons, Ltd (2004). [Google Scholar]
  2. P. Bastian and S. Lang, Couplex benchmark computations with UG. Computat. Geosci. 8 (2004) 125–147. [CrossRef] [Google Scholar]
  3. J. Bear, Dynamics of fluids in porous media. American Elsevier, New York, USA (1972). [Google Scholar]
  4. J. Bear and Y. Bachmat, Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer Academic Publishers, Dordrecht, Boston, London (1991). [Google Scholar]
  5. A. Bourgeat, M. Kern, S. Schumacher and J. Talandier, The COUPLEX test cases: Nuclear waste disposal simulation: Simulation of transport around a nuclear waste disposal site. Computat. Geosci. 8 (2004) 83–98. [CrossRef] [Google Scholar]
  6. M.A. Celia, T.F. Russell, I. Herrera and R.E. Ewing, An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation. Adv. Wat. Res. 13 (1990) 187–206. [CrossRef] [Google Scholar]
  7. G.R. Eykolt, Analytical solution for networks of irreversible first-order reactions. Wat. Res. 33 (1999) 814–826. [CrossRef] [Google Scholar]
  8. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis 7, Amsterdam, North Holland (2000) 713–1020. [Google Scholar]
  9. R. Eymard, T. Gallouët and R. Herbin, Finite volume approximation of elliptic problems and convergence of an approximate gradient, in Handbook of Numerical Analysis 37, Appl. Numer. Math. (2001) 31–53. [Google Scholar]
  10. R. Eymard, T. Gallouët and R. Herbin, Error estimates for approximate solutions of a nonlinear convection-diffusion problem. Adv. Differ. Equ. 7 (2002) 419–440. [Google Scholar]
  11. I. Farago and J. Geiser, Iterative operator-splitting methods for linear problems. International J. Computat. Sci. Eng. 3 (2007) 255–263. [Google Scholar]
  12. E. Fein, Test-example for a waste-disposal and parameters for a decay-chain. Private communications, Braunschweig, Germany (2000). [Google Scholar]
  13. E. Fein, Physical Model and Mathematical Description. Private communications, Braunschweig, Germany (2001). [Google Scholar]
  14. E. Fein, T. Kühle and U. Noseck, Development of a software-package for three dimensional models to simulate contaminated transport problems. Technical Concepts, Braunschweig, Germany (2001). [Google Scholar]
  15. P. Frolkovič, Flux-based method of characteristics for contaminant transport in flowing groundwater. Comput. Vis. Sci. 5 (2002) 73–83. [Google Scholar]
  16. P. Frolkovič and H. De Schepper, Numerical modeling of convection dominated transport coupled with density driven flow in porous media. Adv. Wat. Res. 24 (2001) 63–72. [Google Scholar]
  17. P. Frolkovič and J. Geiser, Numerical Simulation of Radionuclides Transport in Double Porosity Media with Sorption, in Proceedings of Algorithmy 2000, Conference of Scientific Computing (2000) 28–36. [Google Scholar]
  18. J. Geiser, Gekoppelte Diskretisierungsverfahren für Systeme von Konvektions-Dispersions-Diffusions-Reaktionsgleichungen. Doktor-Arbeit, Universität Heidelberg, Germany (2004). [Google Scholar]
  19. M.T. Genuchten, Convective-dispersive transport of solutes involved in sequential first-order decay reactions. Comput. Geosci. 11 (1985) 129–147. [CrossRef] [Google Scholar]
  20. S.K. Godunov, A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sb. 47 (1959) 271–290. [Google Scholar]
  21. E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics 31. Springer Verlag Berlin, Heidelberg, New York (2002). [Google Scholar]
  22. A. Harten, B. Enguist, S. Osher and S. Charkravarthy, Uniformly high order esssentially non-oscillatory schemes I. SIAM J. Numer. Anal. 24 (1987) 279–309. [CrossRef] [MathSciNet] [Google Scholar]
  23. A. Harten, B. Enguist, S. Osher and S. Charkravarthy, Uniformly high order esssentially non-oscillatory schemes III. J. Computat. Phys. 71 (1987) 231–303. [Google Scholar]
  24. W.H. Hundsdorfer, Numerical Solution of Advection-Diffusion-Reaction Equations. Technical Report NM-N9603, CWI (1996). [Google Scholar]
  25. W. Hundsdorfer and J.G. Verwer, Numerical Solution of Time-dependent Advection-Diffusion-Reaction Equations, Springer Series in Computational Mathematics 33. Springer Verlag (2003). [Google Scholar]
  26. X.-D. Liu, S. Osher and T. Chan, Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115 (1994) 200–212. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  27. R.J. LeVeque, Numerical Methods for Conservation Laws, Lectures in Mathematics. Birkhäuser Verlag Basel, Boston, Berlin (1992). [Google Scholar]
  28. R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics. Cambridge University Press (2002). [Google Scholar]
  29. R.I. McLachlan, R.G.W. Quispel, Splitting methods. Acta Numer. 11 (2002) 341–434. [CrossRef] [MathSciNet] [Google Scholar]
  30. K.W. Morton, On the analysis of finite volume methods for evolutionary problems. SIAM J. Numer. Anal. 35 (1998) 2195–2222. [CrossRef] [MathSciNet] [Google Scholar]
  31. P.J. Roache, A flux-based modified method of characteristics. Int. J. Numer. Methods Fluids 12 (1992) 1259–1275. [CrossRef] [Google Scholar]
  32. A.E. Scheidegger, General theory of dispersion in porous media. J. Geophysical Research 66 (1961) 32–73. [Google Scholar]
  33. C.-W. Shu, High order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD. Internat. J. Comput. Fluid Dynamics 17 (2003) 107–118. [CrossRef] [Google Scholar]
  34. T. Sonar, On the design of an upwind scheme for compressible flow on general triangulation. Numer. Anal. 4 (1993) 135–148. [Google Scholar]
  35. B. Sportisse, An analysis of operator-splitting techniques in the stiff case. J. Comput. Phys. 161 (2000) 140–168. [CrossRef] [MathSciNet] [Google Scholar]
  36. G. Strang, On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5 (1968) 506–517. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  37. Y. Sun, J.N. Petersen and T.P. Clement, Analytical solutions for multiple species reactive transport in multiple dimensions. J. Contam. Hydrol. 35 (1999) 429–440. [CrossRef] [Google Scholar]
  38. V. Thomee, Galerkin Finite Element Methods for Parabolic Problems, Lecture Notes in Mathematics 1054. Springer Verlag, Berlin, Heidelberg (1984). [Google Scholar]
  39. J.G. Verwer and B. Sportisse, A note on operator-splitting in a stiff linear case. MAS-R9830, ISSN (1998) 1386–3703. [Google Scholar]
  40. Z. Zlatev, Computer Treatment of Large Air Pollution Models. Kluwer Academic Publishers (1995). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you