Free Access
Volume 43, Number 6, November-December 2009
Page(s) 1185 - 1201
Published online 21 August 2009
  1. M. Amara, D. Capatina-Papaghiuc, E. Chacón-Vera and D. Trujillo, Vorticity-velocity-pressure formulation for the Stokes problem. Math. Comput. 73 (2003) 1673–1697. [CrossRef] [Google Scholar]
  2. M. Amara, D. Capatina-Papaghiuc and D. Trujillo, Stabilized finite element method for the Navier-Stokes equations with physical boundary conditions. Math. Comput. 76 (2007) 1195–1217. [CrossRef] [Google Scholar]
  3. C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional nonsmooth domains. Math. Meth. Appl. Sci. 21 (1998) 823–864. [Google Scholar]
  4. C. Bègue, C. Conca, F. Murat and O. Pironneau, Les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression, in Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar IX, H. Brezis and J.-L. Lions Eds., Pitman (1988) 179–264. [Google Scholar]
  5. C. Bernardi, Y. Maday and F. Rapetti, Discrétisations variationnelles de problèmes aux limites elliptiques, Mathématiques & Applications 45. Springer (2004). [Google Scholar]
  6. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics 15. Springer, Berlin (1991). [Google Scholar]
  7. F. Brezzi, J. Rappaz and P.-A. Raviart, Finite-dimensional approximation of nonlinear problems. I. Branches of nonsingular solutions. Numer. Math. 36 (1980/1981) 1–25. [Google Scholar]
  8. C. Conca, C. Parés, O. Pironneau and M. Thiriet, Navier-Stokes equations with imposed pressure and velocity fluxes. Internat. J. Numer. Methods Fluids 20 (1995) 267–287. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Costabel, A remark on the regularity of solutions of Maxwell's equations on Lipschitz domain. Math. Meth. Appl. Sci. 12 (1990) 365–368. [Google Scholar]
  10. M. Costabel and M. Dauge, Computation of resonance frequencies for Maxwell equations in non smooth domains, in Topics in Computational Wave Propagation, Springer (2004) 125–161. [Google Scholar]
  11. F. Dubois, Vorticity-velocity-pressure formulation for the Stokes problem. Math. Meth. Appl. Sci. 25 (2002) 1091–1119. [CrossRef] [Google Scholar]
  12. F. Dubois, M. Salaün and S. Salmon, Vorticity-velocity-pressure and stream function-vorticity formulations for the Stokes problem. J. Math. Pures Appl. 82 (2003) 1395–1451. [Google Scholar]
  13. K.O. Friedrichs, Differential forms on Riemannian manifolds. Comm. Pure Appl. Math. 8 (1955) 551–590. [CrossRef] [MathSciNet] [Google Scholar]
  14. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer (1986). [Google Scholar]
  15. F. Hecht, A. Le Hyaric, K. Ohtsuka and O. Pironneau, Freefem++. Second edition, v. 3.0-1, Université Pierre et Marie Curie, Paris, France (2007), [Google Scholar]
  16. O. Kavian, Introduction à la théorie des points critiques et applications aux problèmes elliptiques, Mathématiques & Applications 13. Springer (1993). [Google Scholar]
  17. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications 1. Dunod (1968). [Google Scholar]
  18. M. Orlt and A.-M. Sändig, Regularity of viscous Navier-Stokes flows in nonsmooth domains, in Proc. Conf. Boundary Value Problems and Integral Equations in Nonsmooth Domain, Dekker (1995) 185–201. [Google Scholar]
  19. J. Pousin and J. Rappaz, Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems. Numer. Math. 69 (1994) 213–231. [CrossRef] [MathSciNet] [Google Scholar]
  20. S. Salmon, Développement numérique de la formulation tourbillon-vitesse-pression pour le problème de Stokes. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, France (1999). [Google Scholar]
  21. F. Trèves, Basic Linear Partial Differential Equations. Academic Press (1975). [Google Scholar]
  22. R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Teubner-Wiley (1996). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you