Free Access
Volume 43, Number 6, November-December 2009
Page(s) 1117 - 1156
Published online 01 August 2009
  1. A. Ammar, B. Mokdad, F. Chinesta and R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J. Non-Newtonian Fluid Mech. 139 (2006) 153–176. [CrossRef] [Google Scholar]
  2. A. Ammar, B. Mokdad, F. Chinesta and R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids. Part II: Transient simulation using space-time separated representations. J. Non-Newtonian Fluid Mech. 144 (2007) 98–121. [Google Scholar]
  3. S. Balay, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith and H. Zhang, PETSc users manual. Tech. Rep. ANL-95/11 – Revision 2.1.5, Argonne National Laboratory (2004). [Google Scholar]
  4. J.W. Barrett and E. Süli, Existence of global weak solutions to dumbbell models for dilute polymers with microscopic cut-off. Math. Models Methods Appl. Sci. 18 (2008) 935–971. [Google Scholar]
  5. B. Bialecki and R. Fernandes, An orthogonal spline collocation alternating direction implicit Crank-Nicolson method for linear parabolic problems on rectangles. SIAM J. Numer. Anal. 36 (1999) 1414–1434. [CrossRef] [MathSciNet] [Google Scholar]
  6. P.B. Bochev, M.D. Gunzburger and J.N. Shadid, Stability of the SUPG finite element method for transient advection-diffusion problems. Comput. Methods Appl. Mech. Engrg. 193 (2004) 2301–2323. [CrossRef] [MathSciNet] [Google Scholar]
  7. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Second Edn., Springer (2002). [Google Scholar]
  8. M. Celia and G. Pinder, An analysis of alternating-direction methods for parabolic equations. Numer. Methods Part. Differ. Equ. 1 (1985) 57–70. [CrossRef] [Google Scholar]
  9. M. Celia and G. Pinder, Generalized alternating-direction collocation methods for parabolic equations. I. Spatially varying coefficients. Numer. Methods Partial Differ. Equ. 3 (1990) 193–214. [CrossRef] [Google Scholar]
  10. C. Chauvière and A. Lozinski, Simulation of complex viscoelastic flows using Fokker–Planck equation: 3D FENE model. J. Non-Newtonian Fluid Mech. 122 (2004) 201–214. [CrossRef] [Google Scholar]
  11. C. Chauvière and A. Lozinski, Simulation of dilute polymer solutions using a Fokker–Planck equation. Comput. Fluids 33 (2004) 687–696. [CrossRef] [Google Scholar]
  12. P. Clément, Approximation by finite element functions using local regularization. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. RAIRO Anal. Numér. 9 (1975) 77–84. [Google Scholar]
  13. P. Delaunay, A. Lozinski and R.G. Owens, Sparse tensor-product Fokker–Planck-based methods for nonlinear bead-spring chain models of dilute polymer solutions. CRM Proc. Lect. Notes 41 (2007) 73–89. [Google Scholar]
  14. J. Douglas and T. Dupont, Alternating-direction Galerkin methods on rectangles. Numer. Solution Partial Differ. Equ. II (SYNSPADE 1970) (1971) 133–214. [Google Scholar]
  15. H. Eisen, W. Heinrichs and K. Witsch, Spectral collocation methods and polar coordinate singularities. J. Comput. Phys. 96 (1991) 241–257. [CrossRef] [MathSciNet] [Google Scholar]
  16. H. Elman, D. Silvester and A. Wathen, Finite elements and fast iterative solvers. Oxford Science Publications, UK (2005). [Google Scholar]
  17. C. Helzel and F. Otto, Multiscale simulations of suspensions of rod-like molecules. J. Comp. Phys. 216 (2006) 52–75. [CrossRef] [Google Scholar]
  18. W. Huang and B. Guo, Fully discrete Jacobi-spherical harmonic spectral method for Navier-Stokes equations. Appl. Math. Mech. 29 (2008) 453–476 (English Ed.). [CrossRef] [MathSciNet] [Google Scholar]
  19. B. Jourdain, T. Lelièvre and C. Le Bris, Existence of solution for a micro-macro model of polymeric fluid: the FENE model. J. Funct. Anal. 209 (2004) 162–193. [CrossRef] [MathSciNet] [Google Scholar]
  20. B.S. Kirk, J.W. Peterson, R.M. Stogner and G.F. Carey, libMesh: A C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng. Comput. 23 (2006) 237–254. [CrossRef] [Google Scholar]
  21. D.J. Knezevic, Analysis and implementation of numerical methods for simulating dilute polymeric fluids. Ph.D. Thesis, University of Oxford, UK (2008), [Google Scholar]
  22. D.J. Knezevic and E. Süli, Spectral Galerkin approximation of Fokker–Planck equations with unbounded drift. ESAIM: M2AN 43 (2009) 445–485. [CrossRef] [EDP Sciences] [Google Scholar]
  23. A.N. Kolmogorov, Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math. Ann. 104 (1931). [Google Scholar]
  24. T. Li and P. Zhang, Mathematical analysis of multi-scale models of complex fluids. Commun. Math. Sci. 5 (2007) 1–51. [MathSciNet] [Google Scholar]
  25. C. Liu and H. Liu, Boundary conditions for the microscopic FENE models. SIAM J. Appl. Math. 68 (2008) 1304–1315. [CrossRef] [MathSciNet] [Google Scholar]
  26. A. Lozinski, Spectral methods for kinetic theory models of viscoelastic fluids. Ph.D. Thesis, École Polytechnique Fédérale de Lausanne, Suisse (2003). [Google Scholar]
  27. A. Lozinski and C. Chauvière, A fast solver for Fokker–Planck equation applied to viscoelastic flows calculation: 2D FENE model. J. Computat. Phys. 189 (2003) 607–625. [Google Scholar]
  28. J.N. Lyness and D. Jespersen, Moderate degree symmetric quadrature rules for the triangle. J. Inst. Math. Appl. 15 (1975) 19–32. [CrossRef] [MathSciNet] [Google Scholar]
  29. T. Matsushima and P.S. Marcus, A spectral method for polar coordinates. J. Comput. Phys. 120 (1995) 365–374. [CrossRef] [MathSciNet] [Google Scholar]
  30. H.C. Öttinger, Stochastic Processes in Polymeric Fluids. Springer (1996). [Google Scholar]
  31. R.G. Owens and T.N. Phillips, Computational Rheology. Imperial College Press (2002). [Google Scholar]
  32. C. Schwab, E. Süli and R.A. Todor, Sparse finite element approximation of high-dimensional transport-dominated diffusion problems. ESAIM: M2AN 42 (2008) 777–820. [CrossRef] [EDP Sciences] [Google Scholar]
  33. L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483–493. [Google Scholar]
  34. W.T.M. Verkley, A spectral model for two-dimensional incompressible fluid flow in a circular basin. I. Mathematical formulation. J. Comput. Phys. 136 (1997) 100–114. [CrossRef] [MathSciNet] [Google Scholar]
  35. N.J. Walkington, Quadrature on simplices of arbitrary dimension. nw0z/publications/00-CNA-023/023abs/. [Google Scholar]
  36. H.R. Warner, Kinetic theory and rheology of dilute suspensions of finitely extendible dumbbells. Ind. Eng. Chem. Fundamentals 11 (1972) 379–387. [Google Scholar]
  37. H. Zhang and P. Zhang, Local existence for the FENE-dumbbell model of polymeric fluids. Arch. Ration. Mech. Anal. 181 (2006) 373–400. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you