Free Access
Volume 43, Number 6, November-December 2009
Page(s) 1063 - 1097
Published online 09 October 2009
  1. R. Abgrall and R. Saurel, Discrete equations for physical and numerical compressible multiphase mixtures. J. Comput. Phys. 186 (2003) 361–396. [CrossRef] [MathSciNet]
  2. A. Ambroso, C. Chalons, F. Coquel, T. Galié, E. Godlewski, P.-A Raviart and N. Seguin, The drift-flux asymptotic limit of barotropic two-phase two-pressure models. Comm. Math. Sci. 6 (2008) 521–529.
  3. N. Andrianov, Analytical and numerical investigation of two-phase flows. Ph.D. Thesis, Univ. Magdeburg, Germany (2003).
  4. N. Andrianov and G. Warnecke, The Riemann problem for the Baer-Nunziato two-phase flow model. J. Comput. Phys. 195 (2004) 434–464. [CrossRef] [MathSciNet]
  5. N. Andrianov, R. Saurel and G. Warnecke, A simple method for compressible multiphase mixtures and interfaces. Int. J. Numer. Methods Fluids 41 (2003) 109–131. [CrossRef]
  6. M.R. Baer and J.W. Nunziato, A two phase mixture theory for the deflagration to detonation (DDT) transition in reactive granular materials. Int. J. Multiphase Flows 12 (1986) 861–889. [CrossRef]
  7. C. Berthon, B. Braconnier, B. Nkonga, Numerical approximation of a degenerate non-conservative multifluid model: relaxation scheme. Int. J. Numer. Methods Fluids 48 (2005) 85–90. [CrossRef]
  8. F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources, Frontiers in Mathematics series. Birkhauser (2004).
  9. B. Braconnier, Modélisation numérique d'écoulements multiphasiques pour des fluides compressibles, non miscibles et soumis aux effets capillaires. Ph.D. Thesis, Université Bordeaux I, France (2007).
  10. T. Buffard, T. Gallouët and J.M. Hérard, A sequel to a rough Godunov scheme. Application to real gas flows. Comput. Fluids 29 (2000) 813–847. [CrossRef] [MathSciNet]
  11. C.E. Castro and E.F. Toro, A Riemann solver and upwind methods for a two-phase flow model in nonconservative form. Int. J. Numer. Methods Fluids 50 (2006) 275–307. [CrossRef]
  12. C. Chalons and F. Coquel, Navier-Stokes equations with several independent pressure laws and explicit predictor-corrector schemes. Numer. Math. 101 (2005) 451–478. [CrossRef] [MathSciNet]
  13. C. Chalons and J.F. Coulombel, Relaxation approximation of the Euler equations. J. Math. Anal. Appl. 348 (2008) 872–893. [CrossRef] [MathSciNet]
  14. F. Coquel, K. El Amine, E. Godlewski, B. Perthame and P. Rascle, Numerical methods using upwind schemes for the resolution of two-phase flows. J. Comput. Phys. 136 (1997) 272–288. [CrossRef] [MathSciNet]
  15. F. Coquel, E. Godlewski, A. In, B. Perthame and P. Rascle, Some new Godunov and relaxation methods for two phase flows, in Proceedings of the International Conference on Godunov methods: theory and applications, Kluwer Academic, Plenum Publisher (2001).
  16. F. Coquel, T. Gallouët, J.M. Hérard and N. Seguin, Closure laws for a two-phase two-pressure model. C. R. Math. 334 (2002) 927–932.
  17. F. Dubois and P.G. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Differ. Equ. 71 (1988) 93–122. [CrossRef] [MathSciNet]
  18. P. Embid and M. Baer, Mathematical analysis of a two-phase continuum mixture theory. Contin. Mech. Thermodyn. 4 (1992) 279–312. [CrossRef] [MathSciNet]
  19. T. Galié, Couplage interfacial de modèles en dynamique des fluides. Application aux écoulements diphasiques. Ph.D. Thesis, Université Pierre et Marie Curie, France (2008).
  20. T. Gallouët, J.M. Hérard and N. Seguin, Numerical modeling of two-phase flows using the two-fluid two-pressure approach. Math. Mod. Meth. Appl. Sci. 14 (2004) 663–700. [CrossRef] [MathSciNet]
  21. S. Gavrilyuk and R. Saurel, Mathematical and numerical modeling of two-phase compressible flows with micro-inertia. J. Comput. Phys. 175 (2002) 326–360. [CrossRef] [MathSciNet]
  22. J. Glimm, D. Saltz and D.H. Sharp, Two phase flow modelling of a fluid mixing layer. J. Fluid Mech. 378 (1999) 119–143. [CrossRef] [MathSciNet]
  23. P. Goatin and P.G. LeFloch, The Riemann problem for a class of resonant nonlinear systems of balance laws. Ann. Inst. H. Poincaré, Anal. Non linéaire 21 (2004) 881–902.
  24. E. Godlewski and P.A. Raviart, Numerical approximation of hyperbolic systems of conservation laws. Springer-Verlag (1996).
  25. V. Guillemaud, Modélisation et simulation numérique des écoulements diphasiques par une approche bifluide à deux pressions. Ph.D. Thesis, Université de Provence, Aix-Marseille 1, France (2007).
  26. S. Jin and Z. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Comm. Pure Appl. Math. 48 (1995) 235–276. [CrossRef] [MathSciNet]
  27. A.K. Kapila, S.F. Son, J.B. Bdzil, R. Menikoff and D.S. Stewart, Two phase modeling of DDT: structure of the velocity-relaxation zone. Phys. Fluids 9 (1997) 3885–3897. [CrossRef]
  28. S. Karni, E. Kirr, A. Kurganov and G. Petrova, Compressible two-phase flows by central and upwind schemes. ESAIM: M2AN 38 (2004) 477–493. [CrossRef] [EDP Sciences]
  29. P.G. LeFloch, Entropy weak solutions to nonlinear hyperbolic systems in nonconservative form. Commun. Partial Differ. Equ. 13 (1988) 669–727. [CrossRef] [MathSciNet]
  30. P.G. LeFloch, Shock waves for nonlinear hyperbolic systems in nonconservative form. Preprint # 593, Institute for Math. and its Appl., Minneapolis, USA (1989).
  31. P.G. LeFloch and M.D. Thanh, The Riemann problem for fluid flows in a nozzle with discontinuous cross-section. Comm. Math. Sci. 1 (2003) 763–796.
  32. S.T. Munkejord, Comparison of Roe-type methods for solving the two-fluid model with and without pressure relaxation. Comput. Fluids 36 (2007) 1061–1080. [CrossRef]
  33. V.H. Ransom, Numerical benchmark tests, in Multiphase science and technology, Vol. 3, G.F. Hewitt, J.M. Delhaye and N. Zuber Eds., Washington, USA, Hemisphere/Springer (1987) 465–467.
  34. V.V Rusanov, Calculation of interaction of non-steady shock waves with obstacles. J. Comp. Math. Phys. USSR 1 (1961) 267–279.
  35. R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150 (1999) 425–467. [CrossRef] [MathSciNet]
  36. R. Saurel and O. Lemetayer, A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation. J. Fluid Mech. 431 (2001) 239–271. [CrossRef]
  37. D.W. Schwendeman, C.W. Wahle and A.K Kapila, The Riemann problem and high-resolution Godunov method for a model of compressible two-phase flow. J. Comput. Phys. 212 (2006) 490–526. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you