Free Access
Volume 43, Number 6, November-December 2009
Page(s) 1099 - 1116
Published online 21 August 2009
  1. M. Barrault, N.C. Nguyen, Y. Maday and A.T. Patera. An empirical interpolation method: Application to efficient reduced-basis discretization of partial differential equations. C. R. Acad. Sci. Paris Ser. I Math. 339 (2004) 667–672. [Google Scholar]
  2. A. Barret and G. Reddien, On the reduced basis method. Z. Angew. Math. Mech. 75 (1995) 543–549. [MathSciNet] [Google Scholar]
  3. T. Bui-Thanh, K. Willcox and O. Ghattas, Model reduction for large-scale systems with high-dimensional parametric input space. SIAM J. Sci. Comput. 30 (2008) 3270–3288. [CrossRef] [MathSciNet] [Google Scholar]
  4. Y. Chen, J.S. Hesthaven, Y. Maday and J. Rodríguez, A monotonic evaluation of lower bounds for Inf-Sup stability constants in the frame of reduced basis approximations. C. R. Acad. Sci. Paris Ser. I Math. 346 (2008) 1295–1300. [Google Scholar]
  5. M.A. Grepl, Y. Maday, N.C. Nguyen and A.T. Patera. Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM: M2AN 41 (2007) 575–605. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  6. M.D. Gunzburger, Finite element methods for viscous incompressible flows. Academic Press (1989). [Google Scholar]
  7. J.S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, Springer Texts in Applied Mathematics 54. Springer Verlag, New York (2008). [Google Scholar]
  8. D.B.P. Huynh, G. Rozza, S. Sen and A.T. Patera, A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C. R. Acad. Sci. Paris Ser. I Math. 345 (2007) 473–478. [Google Scholar]
  9. L. Machiels, Y. Maday, I.B. Oliveira, A.T. Patera and D. Rovas, Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems. C. R. Acad. Sci. Paris Ser. I Math. 331 (2000) 153–158. [Google Scholar]
  10. Y Maday, Reduced Basis Method for the Rapid and Reliable Solution of Partial Differential Equations, in Proceeding ICM Madrid (2006). [Google Scholar]
  11. Y. Maday, A.T. Patera and D.V. Rovas, A blackbox reduced-basis output bound method for noncoercive linear problems, in Nonlinear Partial Differential Equations and Their Applications, D. Cioranescu and J.L. Lions Eds., Collège de France Seminar XIV, Elsevier Science B.V. (2002) 533–569. [Google Scholar]
  12. D.A. Nagy, Modal representation of geometrically nonlinear behaviour by the finite element method. Comput. Struct. 10 (1979) 683–688. [Google Scholar]
  13. N.C. Nguyen, K. Veroy and A.T. Patera. Certified real-time solution of parametrized partial differential equations, in Handbook of Materials Modeling, S. Yip Ed., Springer (2005) 1523–1558. [Google Scholar]
  14. A.K. Noor and J.M. Peters, Reduced basis technique for nonlinear analysis of structures. AIAA Journal 18 (1980) 455–462. [Google Scholar]
  15. J.S. Peterson, The reduced basis method for incompressible viscous flow calculations. SIAM J. Sci. Stat. Comput. 10 (1989) 777–786. [CrossRef] [Google Scholar]
  16. C. Prud'homme, D. Rovas, K. Veroy, Y. Maday, A.T. Patera and G. Turinici, Reliable realtime solution of parametrized partial differential equations: Reduced-basis output bound methods. J. Fluids Engineering 124 (2002) 70–80. [Google Scholar]
  17. G. Rozza, D.B.P. Huynh and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: Application to transport and continuum mechanics. Arch. Comput. Methods Eng. 15 (2008) 229–275. [Google Scholar]
  18. S. Sen, K. Veroy, D.B.P. Huynh, S. Deparis, N.C. Nguyen and A.T. Patera, “Natural norm” a posteriori error estimators for reduced basis approximations. J. Comput. Phys. 217 (2006) 37–62. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you