Free Access
Issue
ESAIM: M2AN
Volume 44, Number 1, January-February 2010
Page(s) 109 - 131
DOI https://doi.org/10.1051/m2an/2009042
Published online 16 December 2009
  1. R. Belaouar, N. Crouseilles, P. Degond and E. Sonnendrücker, An asymptotically stable semi-lagrangian scheme in the quasi-neutral limit. J. Sci. Comput. 41 (2009) 341–365. [CrossRef] [MathSciNet] [Google Scholar]
  2. C.K. Birdsall and A.B. Langdon, Plasma Physics via Computer Simulation. Institute of Physics Publishing, Bristol and Philadelphia (1991). [Google Scholar]
  3. J.A. Carrillo and F. Vecil, Non-oscillatory interpolation methods applied to Vlasov-based models. SIAM J. Sci. Comput. 29 (2007) 1179–1206. [CrossRef] [MathSciNet] [Google Scholar]
  4. M. Chane-Yook, S. Clerc and S. Piperno, Space charge and potential distribution around a spacecraft in a isotropic plasma. J. Geophys. Res. - Space Physics 111 (2006) A04211. [CrossRef] [Google Scholar]
  5. O. Chanrion, Simulation de l'influence de la propulsion plasmique sur la charge électrostatique d'un satellite en milieu magnétosphérique. Ph.D. Thesis, École nationale des ponts et chaussées, France (2001). [Google Scholar]
  6. J.-P. Chehab, A. Cohen, D. Jennequin, J.J. Nieto, Ch. Roland and J.-R. Roche, An adaptive particle-in-cell method using multi-resolution analysis, in Numerical methods for hyperbolic and kinetic problems, IRMA Lect. Math. Theor. Phys. 7, S. Cordier, T. Goudon, M. Gutnic and E. Sonnendrücker Eds., Eur. Math. Soc., Zürich, Switzerland (2005) 29–42. [Google Scholar]
  7. M. Cho, Arcing on high voltage solar arrays in low earth orbit: theory and computer particle simulation. Ph.D. Thesis, Massachusetts Institute of Technology, USA (1992). [Google Scholar]
  8. S. Clerc, S. Brosse and M. Chane-Yook, Sparcs: an advanced software for spacecraft charging analysis, in 8th Spacecraft Charging Tech. Conf., Huntsville, USA (2003). [Google Scholar]
  9. G.-H. Cottet and P.-A. Raviart, Particle methods for the one-dimensional Vlasov–Poisson equations. SIAM J. Numer. Anal. 21 (1984) 52–76. [Google Scholar]
  10. P. Crispel, Modélisation mathématique et simulation de la transition d'une décharge électrostatique primaire vers un arc électrique secondaire entretenu par la puissance photovoltaïque d'un générateur solaire de satellite. Ph.D. Thesis, Université Paul Sabatier Toulouse III, France (2006). [Google Scholar]
  11. P. Crispel, P. Degond and M.-H. Vignal, Quasi-neutral fluid models for current-carrying plasmas. J. Comput. Phys. 205 (2005) 408–438. [CrossRef] [MathSciNet] [Google Scholar]
  12. N. Crouseilles and F. Filbet, Numerical approximation of collisional plasma by high order methods. J. Comp. Phys. 201 (2004) 546–572. [CrossRef] [Google Scholar]
  13. N. Crouseilles, G. Latu and E. Sonnendrücker, Hermite spline interpolation on patches for parallely solving the Vlasov-Poisson equation. Int. J. Appl. Math. Comput. Sci. 17 (2007) 101–115. [CrossRef] [Google Scholar]
  14. P. Degond, F. Deluzet and L. Navoret, An asymptotically stable Particle-In-Cell (PIC) scheme for collisionless plasma simulations near quasineutrality. C. R. Acad. Sci. Paris, Ser. I 343 (2006) 613–618. [Google Scholar]
  15. F. Filbet and E. Sonnendrücker, Comparison of Eulerian Solver. Comput. Phys. Comm. 150 (2003) 247–266. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  16. F. Filbet, E. Sonnendrücker and P. Bertrand, Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172 (2001) 166–187. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  17. J. Forest, A. Hilgers, B. Thiebault, L. Eliasson, J.-J. Berthelier and H. de Feraudy, An open-source spacecraft plasma interaction simulation code PicUp3D: tests and validations. IEEE Trans. Plasma Sci. 34 (2006) 2103–2113. [CrossRef] [Google Scholar]
  18. A. Ghizzo, P. Bertrand, M. Shoucri, T.W. Johnston, E. Filjakow and M.R. Feix, A Vlasov code for the numerical simulation of stimulated Raman scattering. J. Comput. Phys. 90 (1990) 431. [CrossRef] [MathSciNet] [Google Scholar]
  19. V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J. Vaclavik and L. Villard, A drift-kinetic semi-Lagrangian 4D code for ion turbulence simulation. J. Comput. Phys. 217 (2006) 395–423. [CrossRef] [MathSciNet] [Google Scholar]
  20. R.J. LeVeque, Numerical Methods for Conservation Laws, Lectures in Mathematics – ETH-Zurich. Birkhauser-Verlag, Basel, Switzerland (1990). [Google Scholar]
  21. L. Lévy, Charge des matériaux et systèmes en environnement spatial, CERT–ONERA, in Space environment prevention of risks related to spacecraft charging, Éditions Cepaduès, Toulouse, France (1996). [Google Scholar]
  22. M.J. Mandell, V.A. Davies and L.G. Mikelides, NASCAP-2K Preliminary Documentation. Science Applications International Corp. San Diego, USA, Scientific rept. no. 2, A555024 (2002). [Google Scholar]
  23. M.J. Mandell, V.A. Davies, D.L. Cooke, A.T. Wheelock and C.J. Roth, Nascap-2k spacecraft charging code overview. IEEE Trans. Plasma Sci. 34 (2006) 2084–2093. [CrossRef] [Google Scholar]
  24. A.P. Plokhikh, V.G. Malko and V.A. Semenov, Escape software modeling for the electrostatic charging with electric propulsion in the ionosphere earth. Manuel d'utilisation v-1, Research Institute of Applied Mechanics and Electrodynamics, Moscou, Russia (1998). [Google Scholar]
  25. J.-F. Roussel, Spacecraft plasma environment and contamination simulation code: description and first tests. J. Spacecr. Rockets 35 (1998) 205–211. [CrossRef] [Google Scholar]
  26. J.-F. Roussel, Modelling of spacecraft plasma environment interactions, in Spacecraft Charging Technology, Proceedings of the Seventh International Conference held 23–27 April, 2001 at ESTEC, Noordwijk, The Netherlands, R.A. Harris Ed., European Space Agency, ESA SP-476 (2001). [Google Scholar]
  27. J.F. Roussel, F. Rogier, M. Lemoine, D. Volpert, G. Rousseau, G. Sookahet, P. Sng and A. Hilgers, Design of a new modular spacecraft plasma interaction modeling software (SPIS), in Proceedings of the 8th Spacecraft Charging Tech. Conf., Huntsville, USA, October 20–24 (2003). [Google Scholar]
  28. M. Shoucri and G. Knorr, Numerical integration of the Vlasov equation. J. Comput. Phys. 14 (1974) 84–92. [CrossRef] [Google Scholar]
  29. E. Sonnendrücker, Méthodes semi-Lagrangiennes pour la résolution numérique de l'équation de Vlasov, in Lecture notes CEA-EDF-INRIA School on “Modèles numériques pour la fusion contrôlée”, Nice, France (2008). [Google Scholar]
  30. E. Sonnendrücker, J. Roche, P. Bertrand and A. Ghizzo, The semi-lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys. 149 (1999) 201–220. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you