Free Access
Issue
ESAIM: M2AN
Volume 44, Number 1, January-February 2010
Page(s) 133 - 166
DOI https://doi.org/10.1051/m2an/2009043
Published online 16 December 2009
  1. L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, Switzerland (2005). [Google Scholar]
  2. V.I. Arnold and B.A. Khesin,Topological methods in hydrodynamics, Applied Mathematical Sciences 125. Springer-Verlag, New York, USA (1998). [Google Scholar]
  3. L.A. Caffarelli, Allocation maps with general cost functions, in Partial differential equations and applications, P. Marcellini, G.G. Talenti and E. Vesintini Eds., Lecture Notes in Pure and Applied Mathematics 177, Marcel Dekker, Inc., New York, USA (1996) 29–35. [Google Scholar]
  4. G.-Q. Chen and D. Wang, The Cauchy problem for the Euler equations for compressible fluids, Handbook of mathematical fluid dynamics I. Elsevier, Amsterdam, North-Holland (2002) 421–543. [Google Scholar]
  5. C.M. Dafermos, The entropy rate admissibility criterion for solutions of hyperbolic conservation laws. J. Differential Equations 14 (1973) 202–212. [CrossRef] [MathSciNet] [Google Scholar]
  6. W. Gangbo and R.J. McCann, The geometry of optimal transportation. Acta Math. 177 (1996) 113–161. [CrossRef] [MathSciNet] [Google Scholar]
  7. W. Gangbo and M. Westdickenberg, Optimal transport for the system of isentropic Euler equations. Comm. Partial Diff. Eq. 34 (2009) 1041–1073. [Google Scholar]
  8. E. Hairer, S.P. Norsett and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems. 2nd edition, Springer, Berlin, Germany (2000). [Google Scholar]
  9. D.D. Holm, J.E. Marsden and T.S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137 (1998) 1–81. [Google Scholar]
  10. http://abel.ee.ucla.edu/cvxopt. [Google Scholar]
  11. http://www.ziena.com/knitro.htm. [Google Scholar]
  12. D. Kinderlehrer and N.J. Walkington, Approximation of parabolic equations using the Wasserstein metric. ESAIM: M2AN 33 (1999) 837–852. [CrossRef] [EDP Sciences] [Google Scholar]
  13. J.E. Marsden and M. West, Discrete mechanics and variational integrators. Acta Numer. 10 (2001) 357–514. [CrossRef] [MathSciNet] [Google Scholar]
  14. J. Nocedal and S.J. Wright, Numerical Optimization. Springer, New York, USA (1999). [Google Scholar]
  15. F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Diff. Eq. 26 (2001) 101–174. [Google Scholar]
  16. J.L. Vázquez, Perspectives in nonlinear diffusion: between analysis, physics and geometry, in International Congress of Mathematicians I (2007) 609–634. [Google Scholar]
  17. C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics 58. American Mathematical Society, Providence, USA (2003). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you