Free Access
Issue
ESAIM: M2AN
Volume 44, Number 1, January-February 2010
Page(s) 75 - 108
DOI https://doi.org/10.1051/m2an/2009041
Published online 03 November 2009
  1. C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains. Math. Meth. Appl. Sci. 21 (1998) 823–864. [Google Scholar]
  2. F. Assous, P. Degond, E. Heintzé, P.-A. Raviart and J. Segré, On a finite element method for solving the three-dimensional Maxwell equations. J. Comput. Phys. 109 (1993) 222–237. [CrossRef] [MathSciNet] [Google Scholar]
  3. F. Assous, P. Degond and J. Segré, Numerical approximation of the Maxwell equations in inhomogeneous media by a P1 conforming finite element method. J. Comput. Phys. 128 (1996) 363–380. [CrossRef] [MathSciNet] [Google Scholar]
  4. F. Assous, P. Ciarlet Jr. and E. Sonnendrücker, Resolution of the Maxwell equations in a domain with reentrant corners. Math. Mod. Num. Anal. 32 (1998) 359–389. [Google Scholar]
  5. F. Assous, P. Ciarlet Jr., P.-A. Raviart and E. Sonnendrücker, A characterization of the singular part of the solution to Maxwell's equations in a polyhedral domain. Math. Meth. Appl. Sci. 22 (1999) 485–499. [CrossRef] [Google Scholar]
  6. F. Assous, P. Ciarlet Jr. and J. Segré, Numerical solution to the time-dependent Maxwell equations in two-dimensional singular domains: the singular complement method. J. Comput. Phys. 161 (2000) 218–249. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Birman and M. Solomyak, L2-theory of the Maxwell operator in arbitrary domains. Russ. Math. Surv. 42 (1987) 75–96. [Google Scholar]
  8. M. Birman and M. Solomyak, On the main singularities of the electric component of the electro-magnetic field in regions with screens. St. Petersbg. Math. J. 5 (1993) 125–139. [Google Scholar]
  9. D. Boffi, F. Brezzi and L. Gastaldi, On the convergence of eigenvalues for mixed formulations. Annali Sc. Norm. Sup. Pisa Cl. Sci. 25 (1997) 131–154. [Google Scholar]
  10. A.-S. Bonnet-Ben Dhia, C. Hazard and S. Lohrengel, A singular field method for the solution of Maxwell's equations in polyhedral domains. SIAM J. Appl. Math. 59 (1999) 2028–2044. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Buffa, P. Ciarlet Jr. and E. Jamelot, Solving electromagnetic eigenvalue problems in polyhedral domains. Numer. Math. 113 (2009) 497–518. [CrossRef] [MathSciNet] [Google Scholar]
  12. P. Ciarlet Jr., Augmented formulations for solving Maxwell equations. Comp. Meth. Appl. Mech. Eng. 194 (2005) 559–586. [Google Scholar]
  13. P. Ciarlet Jr. and G. Hechme, Computing electromagnetic eigenmodes with continuous Galerkin approximations. Comp. Meth. Appl. Mech. Eng. 198 (2008) 358–365. [Google Scholar]
  14. P. Ciarlet Jr. and G. Hechme, Mixed, augmented variational formulations for Maxwell's equations: Numerical analysis via the macroelement technique. Numer. Math. (Submitted). [Google Scholar]
  15. P. Ciarlet Jr., C. Hazard and S. Lohrengel, Les équations de Maxwell dans un polyèdre : un résultat de densité. C. R. Acad. Sci. Paris, Ser. I 326 (1998) 1305–1310. [Google Scholar]
  16. M. Costabel and M. Dauge, Un résultat de densité pour les équations de Maxwell régularisées dans un domaine lipschitzien. C. R. Acad. Sci. Paris, Ser. I 327 (1998) 849–854. [Google Scholar]
  17. M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains. Arch. Rational Mech. Anal. 151 (2000) 221–276. [CrossRef] [MathSciNet] [Google Scholar]
  18. M. Costabel and M. Dauge, Weighted regularization of Maxwell's equations in polyhedral domains. Numer. Math. 93 (2002) 239–277. [CrossRef] [MathSciNet] [Google Scholar]
  19. M. Costabel, M. Dauge and S. Nicaise, Singularities of Maxwell interface problems. ESAIM: M2AN 33 (1999) 627–649. [CrossRef] [EDP Sciences] [Google Scholar]
  20. M. Dauge, Benchmark computations for Maxwell equations for the approximation of highly singular solutions. (2004). See Monique Dauge's personal web page at the location http://perso.univ-rennes1.fr/monique.dauge/core/index.html [Google Scholar]
  21. P. Fernandes and G. Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Meth. Appl. Sci. 7 (1997) 957–991. [CrossRef] [Google Scholar]
  22. P. Grisvard, Edge behaviour of the solution of an elliptic problem. Math. Nachr. 132 (1987) 281–299. [CrossRef] [MathSciNet] [Google Scholar]
  23. P. Grisvard, Singularities in boundary value problems, RMA 22. Masson (1992). [Google Scholar]
  24. C. Hazard and M. Lenoir, On the solution of time-harmonic scattering problems for Maxwell's equations. SIAM J. Math. Anal. 27 (1996) 1597–1630. [CrossRef] [MathSciNet] [Google Scholar]
  25. C. Hazard and S. Lohrengel, A singular field method for Maxwell's equations: numerical aspects for 2D magnetostatics. SIAM J. Numer. Anal. 40 (2002) 1021–1040. [CrossRef] [MathSciNet] [Google Scholar]
  26. B. Heinrich, S. Nicaise and B. Weber, Elliptic interface problems in axisymmetric domains. I: Singular functions of non-tensorial type. Math. Nachr. 186 (1997) 147–165. [CrossRef] [MathSciNet] [Google Scholar]
  27. D. Leguillon and E. Sanchez-Palencia, Computation of singular solutions in elliptic problems and elasticity, RMA 5. Masson (1987). [Google Scholar]
  28. S. Lohrengel and S. Nicaise, Singularities and density problems for composite materials in electromagnetism. Comm. Partial Diff. Eq. 27 (2002) 1575–1623. [CrossRef] [Google Scholar]
  29. J.M.-S. Lubuma and S. Nicaise, Dirichlet problems in polyhedral domains. I: Regularity of the solutions. Math. Nachr. 168 (1994) 243–261. [CrossRef] [MathSciNet] [Google Scholar]
  30. P. Monk, Finite element methods for Maxwell's equations. Oxford University Press, UK (2003). [Google Scholar]
  31. M. Moussaoui, Formula dans un polygone plan. C. R. Acad. Sci. Paris, Ser. I 322 (1996) 225–229. [Google Scholar]
  32. S. Nazarov and B. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, Exposition in Mathematics 13. De Gruyter, Berlin, Germany (1994). [Google Scholar]
  33. S. Nicaise, Polygonal interface problems. Peter Lang, Berlin, Germany (1993). [Google Scholar]
  34. S. Nicaise and A.-M. Sändig, General interface problems I, II. Math. Meth. Appl. Sci. 17 (1994) 395–450. [CrossRef] [MathSciNet] [Google Scholar]
  35. B. Smith, P. Bjorstad and W. Gropp, Domain decomposition. Parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, New York, USA (1996). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you