Free Access
Issue |
ESAIM: M2AN
Volume 44, Number 3, May-June 2010
|
|
---|---|---|
Page(s) | 455 - 484 | |
DOI | https://doi.org/10.1051/m2an/2010009 | |
Published online | 04 February 2010 |
- I. Babuška and W.C. Rheinboldt, Error estimates for adaptive finite element method. SIAM J. Numer. Anal. 15 (1978) 736–754. [CrossRef] [MathSciNet] [Google Scholar]
- R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10 (2001) 1–102. [Google Scholar]
- A. Bergam, C. Bernardi and Z. Mghazli, A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comp. 74 (2004) 1117–1138. [Google Scholar]
- C. Bernardi and R. Verfürth, Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85 (2000) 579–608. [CrossRef] [MathSciNet] [Google Scholar]
- S. Berrone, Robust a posteriori error estimates for finite element discretizations of the heat equation with discontinuous coefficients. ESAIM: M2AM 40 (2006) 991–1021. [CrossRef] [EDP Sciences] [Google Scholar]
- P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam (1978). [Google Scholar]
- P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77–84. [Google Scholar]
- W. Dörfler, A convergent adaptive algorithm for Poisson's equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. [CrossRef] [MathSciNet] [Google Scholar]
- M. Dryja, M.V. Sarkis and O.B. Widlund, Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions. Numer. Math. 72 (1996) 313–348. [CrossRef] [MathSciNet] [Google Scholar]
- K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. V. Long-time integration. SIAM J. Numer. Anal. 32 (1995) 1750–1763. [CrossRef] [MathSciNet] [Google Scholar]
- K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Introduction to adaptive methods for differential equations. Acta Numer. 4 (1995) 105–158. [Google Scholar]
- B.S. Kirk, J.W. Peterson, R. Stogner and S. Petersen, LibMesh. The University of Texas, Austin, CFDLab and Technische Universität Hamburg, Hamburg, http://libmesh.sourceforge.net. [Google Scholar]
- B.P. Lamichhane and B.I. Wohlmuth, Higher order dual Lagrange multiplier spaces for mortar finite element discretizations. Calcolo 39 (2002) 219–237. [Google Scholar]
- B.P. Lamichhane, R.P. Stevenson and B.I. Wohlmuth, Higher order mortar finite element methods in 3D with dual Lagrange multiplier bases. Numer. Math. 102 (2005) 93–121. [CrossRef] [MathSciNet] [Google Scholar]
- P. Morin, R.H. Nochetto and K.G. Siebert, Convergence of adaptive finite element methods. SIAM Rev. 44 (2002) 631–658. [CrossRef] [MathSciNet] [Google Scholar]
- M. Petzoldt, A posteriori error estimators for elliptic equations with discontinuous coefficients. Adv. Comput. Math. 16 (2002) 47–75. [CrossRef] [MathSciNet] [Google Scholar]
- M. Picasso, Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Engrg. 167 (1998) 223–237. [Google Scholar]
- L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. [Google Scholar]
- R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. John Wiley & Sons, Chichester-New York (1996). [Google Scholar]
- R. Verfürth, A posteriori error estimates for finite element discretization of the heat equations. Calcolo 40 (2003) 195–212. [CrossRef] [MathSciNet] [Google Scholar]
- B.I. Wohlmuth, A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J. Numer. Anal. 38 (2000) 989–1012. [Google Scholar]
- O.C. Zienkiewicz and J.Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis. Internat. J. Numer. Methods Engrg. 24 (1987) 337–357. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.